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Abstract.  We present Vlasiator, a novel code based on Vlasov’s equation, developed
for modeling magnetospheric plasma on a global scale. We have parallelized the code
to petascale supercomputers with a hybrid OpenMP-MPI approach to answer the high
computational cost of propagating ion distribution functions in six dimensions. The
accuracy of the numerical method is demonstrated by comparing simulated wave dis-
persion plots to analytical results. Simulations of Earth’s bow shock region were able (o
reproduce many well-known plasma phenomena, such as compressional magnetosonic
waves in the foreshock region, and mirror mode instability in the magnetosheath.

1. Introduction

Space weather attempls to predict conditions in near-Earth space that can cause harm
to humans or technological systems. Major space weather events are driven by coronal
mass ejections which, upon impacting Earth’s magnetosphere, can for example cause
errors in GPS positioning. overload transformers via geomagnetically induced currents,
or cause system failure on satellites used by TV companies. Accurate space weather
prediction, requiring capability to model the whole system from the solar surface to
inside Earth’s crust, is still beyond reach. However, many important effects can be
captured by just modeling the magnetosphere and the immediate interplanetary space.

First global models of Earth’s magnetosphere, such as Finnish Meteorological In-
stitute’s GUMICS-4 (Janhunen et al. 2012), were based on ideal MHD models and have
been successful in modeling systems where the plasma can be described with a single
temperature. This leaves out important physical phenomena, such as magnetic recon-
nection, or magnetospheric regions such as jon foreshock or ring current, where the
plasma has multiple components.

Currently two approaches are being used in an attempt to improve the global mod-
els. The first one is based on coupling dedicated models together (e.g., DaldorfF et al.
2014), which may be faster if the dedicated models already exist. However, interface
between models based on different sets of equations may be problematic. A more fun-
damental approach is to use a kinetic description for the whole system, €.g., by mod-
eling the whole system by using a full particle simulation (e.g., Savoini et al. 2013),
or use a model based on Vlasov's equation like in the Vlasiator code. The downside
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of fully kinetic models is the extremely hi i
y high computational cost. We have previousl
mod?}el:lq the magne;tosphere by using a test-Vlasov solver (Palmroth et al 2(? 13) Y
is manuscript gives an overview of Vlasiator, starting wi ription
. . i g with a description of th
numerical approach. We then discuss aspects related to the parallel implen?ention thae;

were necessary to scale the code to petascale su; i
. percomputers. Fina -
sults from self-consistent simulations. b 1. we presentre

2. Numerical Method

A fundamental description of a collisionless plasma is given by the Vlasov equation
Of+(v-V)f+@-v)f=0 M

';(r)lrd 1on1 di_stribgtioq function f = f(r,v,t). Here r and v are the coordinates in spatial
_ V}T ocity directions, a = (q_/m) (E + v x B) is the Lorentz force, and g and m are the
ion charge and mass. Convectional electric field is supplemented by a Hall term.

E=-VxB+(xB)/p, 2)

where the ion charge density p, and bulk velocity V are obtained as moments of f

pa=a [ 1dv. V=(ap) [vidv G)

In self-consistent mo son i .
dons, dels the Vlasov equation is coupled with Maxwell’s equa-

V-E=0,V-B=0, VXE=-4,B, VxB = uj, @)

;V/Il;ire %il’asll-neutrality i’s assumed and displacement current is neglected in Ampere—
i .dwe s law. Vlaspv s equation is just an advection equation for a six-dimensional
uid. We write equation (1) in conservative form,

OF+V-(vF)+V-(aF)=0, (5)

and use a finite volume method to propagate phase-space averages of f
F= f fIHNrANY) Prd
cell ( ) T (6)

h T A 7 and A y are the Cell VOlumeS 111 i 1 velo i y i %) Vv
where 3 5 0
; )‘ Spa[la al'ld 1 CIt dlmel’lSI 1S (Le eque

The fluxes in equation (5) are simply

H,=vF, H,=(q/m)(v-V +j/p;) xBF. 7
Phase-space averages are then propagated as

_ AL ; At
Fa+A) = F() = [Eit - - o [Ho -, (8)

translation ST(Ar) acceleration S A (Af)




i . Left panel) The distribution function of solar wir_ld is concentrated near
::L!sgtlwllrjk] vcim(:itf 'fnd most of the velocity mesh is empty. (Right panel) Illustrlancl)(n
of the sparse velocity mesh. Blocks marked with A and B are flagged as blocks
with content. Block C is a stored no-content block neighboring a b}cck \ynh contep;.l
Block D is not stored. Blocks E are stored because they have spatial neighbors wit
content.

‘here (i. .k, 1, m, n) are the six cell indices. We split Eqn. (8) into separate 3D propaga-
:cl:: ;tépél ilsing Slt“lng splitting, F(r+Af) = S’-r(A{/E)S :.\(A!)S T(A;_{ 2) F(1). Trarltslat!on
operators can be combined to save compuiation time, L.¢., translation and .accéie. eral :03
are leap-frogged over interleaved time steps. 'Thc solution can be synchronize dmdr an
v by applying S1(A1/2) to translate the solution forward in time whenever neede L

The magnetic field is propagated by using a constrained transport scheme (Lon-
drillo & del Zanna 2004), and a second-order accurate Runge—i_{utta propagator. Inte-
oral form of Fadaray’s law is used to propagate B, defined by its normal components
zveraged over cell faces, forward in time. Components of_ E, ajveraged over celg edges,
are needed. We reconstruct the values by using formulas given in Balsara et al. (2009) to
interpolate py, V, and B in Eqn. (2) to cell edges, and thf:n clalculatc the edge avera:glzlas.

Full propagation algorithm has three Courant—Friedrichs—Lewy (CFL) stal:vflj 1%
conditions for the simulation time step coming _from St andl S 4 operators, and fie
solver. The CFL condition states that information propagating at speed u must no:
cross multiple spatial cells during one time step, u At < Ax. Usually the most‘sm?ggn
limitation comes from S s operator, which we sub-step as necessary (0 keep simulation
time step reasonable (~ 50 ms).

3. Parallelization Strategy

Vlasov simulations on magnetospheric scale are con*_nputqlionally very demanglmg. T};p-
ically we need few hundred cells per spatial dimenglon. ie., roughly 10° (10%) c:cll:{;1 or
two (three) dimensional runs. In velocity dimensions limits 2000 krp!s arelus_ to
prevent distributions from flowing out of boundaries, and a 20 km/s g_nd 1eso. utj?nbls1
used to keep numerical diffusion tolerable. Assuming a few thou§and time steps, globa
scale runs require approximately 10'® phase-space cell propagations. . )
Vlasiator has been parallelized to large petascale supercomputers by using a hy-
brid MPI-OpenMP approach. The DCCRG library (Honkonen et a]._2013} is usefl to
decompose the spatial mesh to computing nodes using Ml?]i. Each spatial gell‘ co;:l:alrég a
velocity mesh, which is further divided into 4x4x4 Cartesian bl_ocks, for slqung e Ml;
tribution function. All computations on a single node are multithreaded with OpenMP.

Figure 2.  (Left panel.) Wave dispersion plot for quasi-parallel propagation from
Vlasiator vs. analytical results. Shown are shear Alfvén wave (oblique line), and
right- and left-hand polarized modes (upper and lower branches, correspondingly).
The left-hand polarized mode has a cut-off at ion gyro frequency. (Right panel.)
Dispersion plot for quasi-perpendicular propagation vs. WHAMP solutions. Strong
oblique mode is the non-dispersive magnetosonic wave. First few Bemnstein modes

are visible but weak. Reprinted with permission from Kempf et al. (2013). Copyright
2013, AIP Publishing LLC.

Computational load can be considerably reduced by noting that the distribution
functions are very localized in many regions (von Alfthan et al. 2014). For example,
the slow solar wind is concentrated near v, = 450 km/s. We only store velocity blocks
where the value of F exceeds a pre-set threshold Fyy (blocks with content). Additionally,
we store all 26 velocity space neighbors of content blocks, all 26 nearest neighbors
in spatial directions, and second-nearest spatial neighbors in face-normal directions
(Sandroos et al. 2013). Thus, a block can have F < F but exist because it is a neighbor
of a content block. If a no-content block accumulates enough material so that F' > Fy,
it becomes a content block and its neighbors are created. Conversely, no-content blocks
are removed if all their neighbors are also no-content blocks (see Fig. 1).

Due to varying numbers of velocity blocks per cell, and substepping of S 4 oper-
ator, propagation times of spatial cells can vary by a large factor. The mesh partitioner
assigns very few computationally expensive cells to a node. The main benefit of using
OpenMP threading is that it allows the code to scale to less than one spatial cell per
core. Multithreading also reduces the number of MPI processes, i.c., more cells are
assigned per process than in a pure MPI implementation. This can significantly reduce
the data nodes exchange each time step (whole velocity mesh per spatial cell).

4. Results: Dispersion Relation

In ideal MHD, the only possible electromagnetic wave modes are the non-compressional
shear Alfvén wave, and compressional fast and slow magnetosonic waves. Shear Alfvén
waves do not propagate perpendicular to the mean B. Dispersion relations are

w\2  (Vicos?é, shear waves
Y - 9
(k) T(Va+ Ve x4 J(‘V,\ + Vo) —4V2V2cos?6, 2L magnetosonic 2

where Va and Vs are the Alfvi and sound speeds, and cosé = k- B/ (kB). Kinetic
theories allow for more wave modes. Left- and right-handed polarized modes propagate
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Fieure 3.  Plasma number density (in m—)at the‘end ofa2D magnego‘sjp}teﬁc mns
(cgordinlates in Rg). Quasi-parallel bow shock region rcﬁefcts so(iiar l\\;lgn elt?;;:;e:th
{ i i i rbations is formed. Ma ;
a foreshock associated with magnetosonic pertu S TR
i stream of the bow shock, is characterized by pe ons driv
ir\? :L?Er‘g;l rgzz;eninsmhility. The panels on the right show the shapes of distribution
fanctions at the positions marked with letiers A-D.

along or quasi-parallel to mean B and, in low frec!uency limit, converge t? tt:e zll::t?;
Alfvén wave. Last wave modes in range of interesting 1F?:'t=.c|uen{:1es are the electro:
i i asi- icular to the mean B.
jon Bernstein modes, quasi-perpendicu . _ o " .
Vlasiator wave dispersion plots were studied by using a penoch:; (;Tsendég:gr?;?;:;
i i in x-directi t al. 2013). Wave veclors were ¢
simulation box in x-direction (Kempf e _ !
to lie in that direction. Angle between mean rna%neue field arn:alm ?:V?n‘;fica[l{l); \:f;nsdg;
i i le with respect to x-axis. :
fined by setting ambient B to be at an ang : : :
parturbzlions :ere added to otherwise uniform bulk velocity and n_umber dfansl’:y‘,:l :i ter
which the system was allowed to relax without forcing for several ion gyro pe:rl:ol 954)
Figure 2 shows comparisons between Vlasiator and WHAMP (Ronnma{ e :S-.
WHAMEP solves linearized analytic dispersion equaulonslot_wa\ties :1 :;?ilizﬁz : & a‘-’e
i i ith analytical solution for quasi-
mas. A very close match is obtained wil . T )
propagation, and with WHAMP for quasi-perpendicular propagation. As Vll)a§éa$]ra223
WHAMP solve Vlasov's equation using different approach;s, na{n:tfiggicr;t(;r L
i i ineariz ineti the good correspondence 1s :
simulation and linearized kinetic theory, the g _ A
i i jator. The non-propagating mode at ; gl
cellent numerical accuracy of Vlasiator. gatl '
i):md panel of Fig. 2, and its first harmonic, are due to the ll'.llllal random perturbations
fluctuating at the ion gyro frequency throughout the simulation box.

5. Results: Global Magnetospheric Simulations

near Earth’s bow shock were studied with spatially two-

2 :
b Feniaions: @ khotelov et al. 2013). The dayside part of the magne-

dimensional simulations (Po

tosheath, the bow shock, and the foreshock region were included in simulation do-

mdin. INOminal solar wind values were used, 1.e., a Maxwellian 1on distribution at 10°
K temperature, 10® m~3 number density, 500 km/s bulk speed, and 5 nT magnetic field
pointing at 45° Parker spiral an%le. Earth’s magnetic dipole points to the z direction.
and has a strength of 8- 102 Am”. A 450x 900 spatial mesh was used with 0.13 R res-
olution, where Rg is the Earth radius. The velocity mesh limits were set to £2000 km/s
in all directions with a resolution of 20 km/s. The resolution is sufficient to resolve
ion thermal speeds of 65 kmy/s in the foreshock and 200 km/s in the magnetosheath.
However, no attempt was made in trying to resolve thermal gyroscales of ~ 200 km.

After initial perturbations settle, a collisionless bow shock forms in front of the
Earth (see Fig.3). The bow shock can be separated into quasi-parallel and quasi-
perpendicular regions. Foreshock forms only in the quasi-parallel region, where ions
are reflected off the bow shock back to the solar wind. The solar wind core is indicated
by the small spheres in panels B-D in Fig.3. Ion distributions are qualitatively consistent
with known single- and multi-spacecraft foreshock measurements. Distributions can
be described as “narrow gyrating” near the foreshock boundary, “cap-shaped” deeper
in the foreshock. and “diffuse cap™ further towards the magnetotail (panels B,D,C in
Fig.3). Reflected ions are unstable to wave generation, and drive quasi-monochromatic
compressional oscillations with roughly 30 second period and 1 —2Rg wavelength, with
an amplitude of 5-10% of the ambient magnetic field and density, in the region where
intermediate ion distributions are seen. These values are consistent with theoretical
predictions for fast magnetosonic waves in the ideal MHD limit.

Magnetosheath is the region downstream of the bow shock. The solar wind is
significantly thermalized and heated at the bow shock. The ion distributions change
from “horseshoe” distributions, seen downstream of the bow shock, to gyrotropic bi-
Maxwellian distributions (panel A of Fig.3) deeper inside the magnetosheath. Bi-
Maxwellian distributions, with temperature anisotropy transverse to the ambient mag-
netic field direction, are known to be subject to mirror mode and ion-cyclotron insta-
bilities. Vlasiator results clearly show signatures associated with perturbations induced
by the mirror mode instability, i.e., anticorrelation between plasma density and mag-
netic field magnitude, loss cone ion distributions due to ion trapping between magnetic
mirrors, and spatial lengthscales of the order of few ion inertial lengths.
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