Using games for measuring similarity between mathematical structures

Joni Puljujärvi

DOMAST Student Seminar

March 25, 2022

Joni Puljujärvi

Using games for blah blah blah...

March 25, 2022

• played on two *structures*

Image: 10 million

э

- played on two *structures*
- by two players:

I II

→

< A

- played on two structures
- by two players:

I II Abelard Eloise

→

- played on two structures
- by two players:

 $\begin{matrix} I & II \\ Abelard & Eloise \\ \forall & \exists \end{matrix}$

Joni Puljujärvi	Usin	g

→ ∃ →

- played on two structures
- by two players:

→ ∃ →

- played on two *structures*
- by two players:

• for some fixed length n (a natural number) or ω (continues "forever")

- played on two *structures*
- by two players:

- for some fixed length n (a natural number) or ω (continues "forever")
- We denote by $EF_n(\mathfrak{A}, \mathfrak{B})$ the EF game of length *n* between structures \mathfrak{A} and \mathfrak{B} .

・ロト ・四ト ・ヨト ・ヨト

3

・ロト ・四ト ・ヨト ・ヨト

4 / 30

・ロト ・四ト ・ヨト ・ヨト

	< c	 • • • • • • • 	(≣)	 $\mathcal{O} \land \mathcal{O}$
uljujärvi	Using games for blah blah blah	March 25,	2022	4 / 30

Puljujärvi	Using games for blah blah blah	March 25, 2022	4 / 30
	< □	→ ★@ > ★ E > ★ E > E	596

Joni Puljujärvi	Using games for blah blah blah	March 25, 2022	4 / 30

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

(日) (四) (日) (日) (日)

Player II wins if the mapping a_i → b_i is a partial isomorphism; otherwise Player I wins.

< 17 ×

→ Ξ →

Player II wins if the mapping a_i → b_i is a partial isomorphism; otherwise Player I wins.

Joni Puljujärvi

A partial isomorphism between two structures 𝔅 and 𝔅 is a partial function f: 𝔅 → 𝔅 that preserves the mathematical structure of 𝔅 (and of 𝔅)

- Player II wins if the mapping a_i → b_i is a partial isomorphism; otherwise Player I wins.
- A partial isomorphism between two structures 𝔅 and 𝔅 is a partial function f: 𝔅 → 𝔅 that preserves the mathematical structure of 𝔅 (and of 𝔅)
- Examples:
 - If 𝔅 = (G, ·) and 𝔅 = (G', ·) are groups, then f: G → G' is a partial isomorphism iff it is an injective partial homomorphism (in the algebraic sense)

- Player II wins if the mapping a_i → b_i is a partial isomorphism; otherwise Player I wins.
- A partial isomorphism between two structures 𝔅 and 𝔅 is a partial function f: 𝔅 → 𝔅 that preserves the mathematical structure of 𝔅 (and of 𝔅)
- Examples:
 - If 𝔅 = (G, ·) and 𝔅 = (G', ·) are groups, then f: G → G' is a partial isomorphism iff it is an injective partial homomorphism (in the algebraic sense)
 - ② If $\mathfrak{A} = (A, <)$ and $\mathfrak{B} = (B, <)$ are linear orders, then $f : A \to B$ is a partial isomorphism iff for all $a, a' \in \text{dom}(f)$

$$a < a' \iff f(a) < f(a').$$

Properties of the Game

- The game is determined: one of the players has a *winning strategy*
- If II wins a game of length n, then she wins the game of length m for any m ≤ n
- If I wins a game of length n, then he wins the game of length m for any $m \ge n$

< ∃ >

Elementary Equivalence

Two structures \mathfrak{A} and \mathfrak{B} are *elementarily equivalent* if they have the same *first-order theory*,

- 一日

3 🕨 🤅 3

Elementary Equivalence

Two structures \mathfrak{A} and \mathfrak{B} are *elementarily equivalent* if they have the same *first-order theory*, i.e. for every (finitary) statement φ consisting of

- atomic statements, e.g. x = y or 0 < n,
- ''and'',
- ''or'',
- "not",
- "if . . . then",
- "if and only if",
- "for every element x . . . ", and
- "there is an element x such that...",
- φ is true in \mathfrak{A} if and only if it is true in \mathfrak{B} .

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings

- B

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings

"Elementary" properties:

- "there are infinitely many elements"
- "every polynomial has a root", in the language of rings
- "there are no torsion elements", in the language of groups

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings

"Elementary" properties:

- "there are infinitely many elements"
- "every polynomial has a root", in the language of rings

• "there are no torsion elements", in the language of groups "Non-elementary" properties:

- "there are only finitely many elements"
- "the graph is connected", in the language of graphs
- "every bounded non-empty set has a supremum", in the language of real closed fields

Theorem

Joni Puljujärvi

 \mathfrak{A} and \mathfrak{B} are elementarily equivalent if and only if, for every $n \in \mathbb{N}$, II has a winning strategy in the EF game of length n between \mathfrak{A} and \mathfrak{B} .

For proof, see e.g. J. Väänänen, Models and Games.

크다 소프다 ...

Joni Puljujärvi

Using games for blah blah blah	March 25, 2022	10/30
--------------------------------	----------------	-------

oni Puljujärvi	Using games for blah blah blah	N	larch 25, 2022	2 10/30
	< c	· →	* 注 > * 注)	

イロト イヨト イヨト イヨト

イロト イボト イヨト イヨト

Joni Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30

Joni Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30

Jo

loni Puljujärvi	Using games for blah blah blah	March 25, 2022	10 / 30

Jo

oni Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30

イロト イヨト イヨト イヨト

Joni F

Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30

Joni Puljujärvi	Using games for blah blah blah	March 25, 2022	10 / 30

Joni

i Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30
			,

		_			_	-	2.10
Joni Puljujärvi	Using games for blah blah blah		Mai	rch 25	5, 2022		10 / 30

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨ ● の ○ ○

Joni Puljujärvi	Using games for blah blah blah	March 25, 2022	10/30

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

・ロト ・ 四ト ・ ヨト ・ ヨト …

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

3

Joni Puljujärvi

Joni Puljujärvi

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

The EF game EF_ω(𝔅,𝔅) of length ω captures similarity of structures 𝔅 and 𝔅 in a more complicated logic called L_{∞ω} where infinite conjunctions and disjunctions are allowed.

- The EF game EF_ω(𝔅, 𝔅) of length ω captures similarity of structures 𝔅 and 𝔅 in a more complicated logic called L_{∞ω} where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z} + \mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.

- The EF game EF_ω(𝔅, 𝔅) of length ω captures similarity of structures 𝔅 and 𝔅 in a more complicated logic called L_{∞ω} where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z} + \mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.
- It can be expressed in $\mathcal{L}_{\infty\omega}$ as follows:

$$\exists x \exists y \bigwedge_{n \in \mathbb{N}} \exists z_0 \ldots \exists z_{n-1} (x < z_0 < \cdots < z_{n-1} < y)$$

- The EF game EF_ω(𝔅, 𝔅) of length ω captures similarity of structures 𝔅 and 𝔅 in a more complicated logic called L_{∞ω} where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z} + \mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.
- It can be expressed in $\mathcal{L}_{\infty\omega}$ as follows:

$$\exists x \exists y \bigwedge_{n \in \mathbb{N}} \exists z_0 \ldots \exists z_{n-1} (x < z_0 < \cdots < z_{n-1} < y)$$

• In particular, this sentence is in $\mathcal{L}_{\omega_1\omega}$ where only countably infinite conjunctions and disjunctions are allowed.

Lemma

If \mathfrak{A} and \mathfrak{B} are countable, then $\mathfrak{A} \cong \mathfrak{B}$ if and only if Π has a winning strategy in $EF_{\omega}(\mathfrak{A}, \mathfrak{B})$.

Proof.

Let a_i , $i \in \mathbb{N}$, enumerate \mathfrak{A} and b_i , $i \in \mathbb{N}$, enumerate \mathfrak{B} . If II has a winning strategy, then on round i, I can just play a_i when i is even and b_i when i is odd, and the resulting function is an isomorphism $\mathfrak{A} \to \mathfrak{B}$.

Tool: Ordinal Numbers

Definition

A linear order (X, <) is a *well-order* if every non-empty subset of X has a <-least element.

→ ∃ →

э

Tool: Ordinal Numbers

Definition

A linear order (X, <) is a *well-order* if every non-empty subset of X has a <-least element.

Lemma

(X, <) is a well-order if and only if there is no infinite decreasing sequence $x_0 > x_1 > \dots$ in X.

- An ordinal number is a particularly nice representative of an isomorphism class of well-orders.
- An ordinal is well-ordered by the relation \in .
- Every well-order X is isomorphic to a unique ordinal, the *order-type* of X.
- One can do induction and recursion on ordinals.

Joni Puljujärvi

• ω is the order type of ($\mathbb{N}, <$):

æ

イロト イボト イヨト イヨト

• ω is the order type of $(\mathbb{N}, <)$:

• $\omega + 1$ is the order type of the set $\{0, 1\} \cup \{\frac{n-1}{n} \mid n > 1\}$, where the order is the ordinary ordering of real numbers:

→ ∃ →

• ω is the order type of ($\mathbb{N}, <$):

• $\omega + 1$ is the order type of the set $\{0, 1\} \cup \{\frac{n-1}{n} \mid n > 1\}$, where the order is the ordinary ordering of real numbers:

$$\begin{array}{c} \omega + 1 \\ \bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \omega \end{array}$$

- $\omega + n$ is defined as one would expect
- $\omega + \omega$ (also known as $\omega \cdot 2$) is the order type of $\mathbb{N} + \mathbb{N}$:

Cardinal Numbers

- An ordinal κ is called a *cardinal number* if there are no α < κ such that there is a bijection α → κ.
- Examples: ω is a cardinal but $\omega + 1$ is not.
- The next cardinal after ω is ω_1 , the first uncountable ordinal.
- If κ is a cardinal, we denote by κ^+ the least cardinal $> \kappa$.
- For every set X there is a unique cardinal κ such that there is a bijection $\kappa \to X$. Such κ is called the *cardinality of* X and denoted by |X|.

Example of Transfinite Recursion

Theorem

Every vector space has a basis.

Proof.

Let V be a vector space and let v_{α} , $\alpha < \kappa$, enumerate V, where $\kappa = |V|$. Then the set

$$\{\mathbf{v}_{\alpha} \mid \alpha < \kappa, \mathbf{v}_{\alpha} \notin \operatorname{span}(\{\mathbf{v}_{\beta} \mid \beta < \alpha\})\}$$

is a basis of V.

< AP

- A dynamic Ehrenfeucht–Fraïssé game is similar to the ordinary EF game, but it has an *ordinal clock* that ticks downwards.
- We denote by $EFD_{\alpha}(\mathfrak{A}, \mathfrak{B})$ a game with clock α between the structures \mathfrak{A} and \mathfrak{B} .
- Each round *n* I chooses some $\alpha_n < \alpha$ such that $\alpha_{n+1} < \alpha_n$ for every *n*. The game ends on the round *n* when I chooses $\alpha_n = 0$.

Example with clock $\omega+2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example with clock $\omega + 2$

Joni Puljujärvi

Using games for blah blah blah...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example with clock $\omega + 2$

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 March 25, 2022

Example with clock $\omega + 2$

イロト イボト イヨト イヨト

3

Example with clock $\omega + 2$

イロト イボト イヨト イヨト

Example with clock $\omega + 2$

Example with clock $\omega + 2$

イロト イポト イヨト イヨト

Example with clock $\omega + 2$

イロト イポト イヨト イヨト

Example with clock $\omega + 2$

イロト イポト イヨト イヨト

Example with clock $\omega + 2$

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 March 25, 2022

Example with clock $\omega + 2$

イロト イヨト イヨト イヨト

3

Example with clock $\omega + 2$

イロト イボト イヨト イヨト

3

Example with clock $\omega + 2$

イロト イボト イヨト イヨト

3

Example with clock $\omega + 2$

Joni Puljujärvi

Example with clock $\omega + 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example with clock $\omega + 2$

Example with clock $\omega + 2$

Example with clock $\omega + 2$

Joni Puljujärvi

Example with clock $\omega + 2$

Joni Puljuj

ijärvi	Using games for blah blah blah	M	arch 2	5, 2022	1	9/30
	•	<⊡>	< ≣ >	< ≣ >	-	500

Example with clock $\omega + 2$

Joni Pulju

ujärvi	Using games for blah blah blah		N	larch	25	, 2022	<u>i</u>	19	/ 30
	< □	< 64	×.	< E	Þ.	< E)	-	(°)	Q (*

Example with clock $\omega + 2$

Joni Pulji

jujärvi	Using games for blah blah blah	N	March 25	, 2022	1	9/30
	• •		1 - 1	1 = 1	-	*) Q (*

Example with clock $\omega + 2$

Joni Pu

uljujärvi	Using games for blah blah blah	March 25, 2022	19 / 30
	< C	▲圖▶ ▲ 臣▶ ▲ 臣▶	$\equiv \mathcal{O} \land \mathcal{O}$

Example with clock $\omega + 2$

Joni Puljujä

irvi	Using games for blah blah blah	March 25, 2022	19/30
	< E	▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶	≡ ∽ へ (~

Example with clock $\omega + 2$

 \mathbb{Z}

	Using games for blah blah blah	
--	--------------------------------	--

Example with clock $\omega + 2$

Joni

Puljujärvi	Using games for blah blah blah	March 25, 2022	19/30
	4		≣ *) Q (*

Example with clock $\omega + 2$

Joni

Puljujärvi	Using games for blah blah blah	March 25, 2022	19/30
	۹.		*) Q (*

Example with clock $\omega + 2$

Joni Pu

uljujärvi	Using games for blah blah blah	March 25, 2022	19/30
	< c	・四・・モ・・モ・	$\equiv \mathcal{O} \land \mathcal{O}$

Example with clock $\omega + 2$

Joni Pu

uljujärvi	Using games for blah blah blah	March 25,	2022	19	/ 30
				= 1	ACT

-

Example with clock $\omega + 2$

Joni Pul

ji in i			10 / 20
ljujärvi	Using games for blah blah blah	March 25, 2022	19 / 30

Example with clock $\omega + 2$

Using games for blah blah blah		March 25, 2022	19/30
< E	∎ ►	▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶	$\equiv \mathcal{O} \land \mathcal{O}$

Dynamic Games vs. the Infinite Game

Theorem

Player II has a winning strategy in $EF_{\omega}(\mathfrak{A}, \mathfrak{B})$ if and only if she has a winning strategy in $EFD_{\alpha}(\mathfrak{A}, \mathfrak{B})$ for every $\alpha < (|\mathfrak{A}| + |\mathfrak{B}|)^+$.

For a proof, see again the book by Väänänen.

Dynamic Games vs. Logic

• For any structure \mathfrak{A} , there is a least ordinal α , called the *Scott rank of* \mathfrak{A} , such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^n$ and Π has a winning strategy in

 $\mathrm{EFD}_{\alpha}((\mathfrak{A},\bar{a}),(\mathfrak{A},\bar{b})),$

then also II has a winning strategy in

 $\operatorname{EFD}_{\alpha+1}((\mathfrak{A},\bar{a}),(\mathfrak{A},\bar{b})).$

Dynamic Games vs. Logic

• For any structure \mathfrak{A} , there is a least ordinal α , called the *Scott rank of* \mathfrak{A} , such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^n$ and Π has a winning strategy in

 $\mathrm{EFD}_{\alpha}((\mathfrak{A},\bar{a}),(\mathfrak{A},\bar{b})),$

then also ${\rm II}$ has a winning strategy in

 $\mathrm{EFD}_{\alpha+1}((\mathfrak{A},\bar{a}),(\mathfrak{A},\bar{b})).$

• For every structure \mathfrak{A} , tuple $\bar{a} \in \mathfrak{A}^n$ and ordinal α , there is a formula $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x})$ of $\mathcal{L}_{\infty\omega}$ such that for any other structure \mathfrak{B} and $\bar{b} \in \mathfrak{B}^n$,

 $\mathfrak{B}\models \varphi_{\mathfrak{A}}^{\bar{\mathfrak{a}}}(\bar{b})\iff \mathrm{II} \text{ has a winning strategy in }\mathrm{EFD}_{\alpha}((\mathfrak{A},\bar{\mathfrak{a}}),(\mathfrak{B},\bar{b})).$

Dynamic Games vs. Logic

• For any structure \mathfrak{A} , there is a least ordinal α , called the *Scott rank of* \mathfrak{A} , such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^n$ and Π has a winning strategy in

 $\operatorname{EFD}_{\alpha}((\mathfrak{A}, \overline{a}), (\mathfrak{A}, \overline{b})),$

then also II has a winning strategy in

 $\mathrm{EFD}_{\alpha+1}((\mathfrak{A},\bar{a}),(\mathfrak{A},\bar{b})).$

• For every structure \mathfrak{A} , tuple $\bar{a} \in \mathfrak{A}^n$ and ordinal α , there is a formula $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x})$ of $\mathcal{L}_{\infty\omega}$ such that for any other structure \mathfrak{B} and $\bar{b} \in \mathfrak{B}^n$,

 $\mathfrak{B}\models \varphi_{\mathfrak{A}}^{\bar{\mathfrak{a}}}(\bar{b})\iff \mathrm{II} \text{ has a winning strategy in }\mathrm{EFD}_{\alpha}((\mathfrak{A},\bar{\mathfrak{a}}),(\mathfrak{B},\bar{b})).$

• If $\alpha < \omega_1$, then $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x}) \in \mathcal{L}_{\omega_1 \omega}$.

Scott's Isomorphism Theorem

Theorem

For every countable \mathfrak{A} , there exists a sentence $\sigma_{\mathfrak{A}}$ of $\mathcal{L}_{\omega_1\omega}$ such that for any other countable \mathfrak{B} ,

$$\mathfrak{B}\models\sigma_{\mathfrak{A}}\iff\mathfrak{B}\cong\mathfrak{A}.$$

→ ∃ →

Scott's Isomorphism Theorem

Theorem

For every countable \mathfrak{A} , there exists a sentence $\sigma_{\mathfrak{A}}$ of $\mathcal{L}_{\omega_1\omega}$ such that for any other countable \mathfrak{B} ,

$$\mathfrak{B}\models\sigma_{\mathfrak{A}}\iff\mathfrak{B}\cong\mathfrak{A}.$$

Proof sketch.

Using the formulas $\varphi_{\mathfrak{A}}^{\bar{\mathfrak{a}}}(\bar{x})$, construct a sentence $\sigma_{\mathfrak{A}}$ that expresses that "II can win enough dynamic games" (up until the Scott rank of \mathfrak{A}). Then $\mathfrak{B} \models \sigma_{\mathfrak{A}}$ iff II wins $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$.

Approximate Games for Metric Structures

To summarize:

- Player II has a winning strategy in a game of infinite length between two *countable* structures if and only if the structures are isomorphic.
- The infinite game can be approximated by games of *dynamic length*.
- Dynamic games correspond to formulas of a certain logic.
- Thus we can describe a countable structure up to isomorphism using said logic.

Metric structures

For metric structures, such as

- metric spaces,
- Banach spaces, and
- Hilbert spaces,

we want

- an infinite game such that two *separable* structures are isomorphic if and only if II has a winning strategy,
- dynamic games for approximating the infinite game, and
- formulas corresponding the dynamic games.

Linear Isomorphisms of Banach Spaces

- If \mathfrak{A} and \mathfrak{B} are Banach spaces, a bijection $f : \mathfrak{A} \to \mathfrak{B}$ is a linear isomorphism if it is linear and bi-Lipschitz.
- For $\varepsilon \ge 0$, if f is a linear e^{ε} -bi-Lipschitz function, then we call f an ε -isomorphism.

• Consider as atomic formulas expressions

$$\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1 \quad \text{and} \quad \left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1,$$

where $c_i \in \mathbb{Q}$.

< ∃⇒

4 円

æ

• Consider as atomic formulas expressions

$$\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1$$
 and $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1$,

where $c_i \in \mathbb{Q}$.

• An atomic formula $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1$ is k-good (for $k \in \mathbb{N}$) if n = kand $|c_i| \le k$ for all i < n, and similarly for $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1$. • Consider as atomic formulas expressions

$$\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1$$
 and $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1$,

where $c_i \in \mathbb{Q}$.

- An atomic formula $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1$ is k-good (for $k \in \mathbb{N}$) if n = kand $|c_i| \le k$ for all i < n, and similarly for $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1$.
- We define the ε -approximation of $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \le 1$ (for $\varepsilon \ge 0$) to be

$$\left\|e^{-\varepsilon}\sum_{i=0}^{n-1}c_ix_i\right\|\leq 1$$

and of $\left\|\sum_{i=0}^{n-1} c_i x_i\right\| \ge 1$ to be

$$\left\|e^{\varepsilon}\sum_{i=0}^{n-1}c_ix_i\right\|\geq 1.$$

We denote by $\operatorname{Appr}(\varphi, \varepsilon)$ the ε -approximation of φ_{+}

Approximate Games

If 𝔅 and 𝔅 are two Banach spaces and D_𝔅 ⊆ 𝔅 and D_𝔅 ⊆ 𝔅 are dense sets and ε ≥ 0, then the game

$$\mathrm{EF}^{\mathfrak{A},\mathfrak{B}}_{\omega,arepsilon}(D_{\mathfrak{A}},D_{\mathfrak{B}})$$

is played like the ordinary EF game between two sets but in addition in each round *i*, I picks some $\varepsilon_i > \varepsilon$.

• In the end II wins if for every $k \in \mathbb{N}$ and k-good formula $\varphi(x_0, \ldots, x_{k-1})$,

$$\mathfrak{A} \models \varphi(a_{i_0}, \dots, a_{i_{k-1}}) \implies \mathfrak{B} \models \operatorname{Appr}(\varphi, \varepsilon_k)(b_{i_0}, \dots, b_{i_{k-1}})$$

for all $i_0, \dots, i_{k-1} \ge k$.

Theorem (Hirvonen-P.)

Joni Puljujärvi

Let \mathfrak{A} and \mathfrak{B} be separable Banach spaces and $\varepsilon \geq 0$. Then II has a winning strategy in $\mathrm{EF}_{\omega,\varepsilon}^{\mathfrak{A},\mathfrak{B}}(\mathfrak{A},\mathfrak{B})$ if and only if there exists an ε -isomorphism $\mathfrak{A} \to \mathfrak{B}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Hirvonen-P.)

Let \mathfrak{A} and \mathfrak{B} be separable Banach spaces and $\varepsilon \geq 0$. Then II has a winning strategy in $\mathrm{EF}_{\omega,\varepsilon}^{\mathfrak{A},\mathfrak{B}}(\mathfrak{A},\mathfrak{B})$ if and only if there exists an ε -isomorphism $\mathfrak{A} \to \mathfrak{B}$.

Proof sketch.

If II has a winning strategy, let $D_{\mathfrak{A}} \subseteq \mathfrak{A}$ and $D_{\mathfrak{B}} \subseteq \mathfrak{B}$ be countable dense sets. We let I play all the elements of both dense sets as his moves in the infinite game. Let $(a_i)_{i\in\mathbb{N}}$ and $(b_i)_{i\in\mathbb{N}}$ denote the elements played in each space. Now one can prove that if $(i_k)_{k\in\mathbb{N}}$ is an increasing sequence of indices, then $(a_{i_k})_{k\in\mathbb{N}}$ is Cauchy iff $(b_{i_k})_{k\in\mathbb{N}}$ is Cauchy. Then the mapping that maps limit points of $(a_i)_{i\in\mathbb{N}}$ to the limit points of $(b_i)_{i\in\mathbb{N}}$ is an ε -isomorphism.

Dynamic Games and Formulas

- We can define dynamic ε-games corresponding to the infinite game and get similar results.
- Similarly to the classical case, we can build formulas corresponding to the dynamic games.
- We get an ε -Scott sentence of a Banach space \mathfrak{A} . Interestingly, this sentence might not be an element of $\mathcal{L}_{\omega_1\omega}$, i.e. it could contain uncountable conjunctions or disjunctions.
- However, it is an element of $\mathcal{L}_{\omega_2\omega}$ (so the conjunctions and disjunctions are not *that long*).
- Can't be bothered with the details, see the paper if you're somehow still interested. ;)

References for the Curious

Itaï Ben Yaacov, Michal Doucha, André Nies, and Todor Tsankov. Metric Scott analysis. Adv. Math., 318:46–87, 2017.

- C. Henson. Nonstandard hulls of Banach spaces. Israel Journal of Mathematics, 25:108–144, 1976.
- 🔋 Åsa Hirvonen and Joni Puljujärvi.

Games and Scott sentences for positive distances between metric structures.

arXiv e-prints, page arXiv:2102.00993, June 2021.

Jouko Väänänen.

Models and games, volume 132 of *Cambridge Studies in Advanced Mathematics*.

Cambridge University Press, Cambridge, 2011.