Using games for measuring similarity between mathematical structures

Joni Puljujärvi

DOMAST Student Seminar

March 25, 2022

The Ehrenfeucht-Fraïssé Game

- played on two structures

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

$$
\begin{array}{ll}
I & \text { II }
\end{array}
$$

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

I	II
Abelard	Eloise

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

I	II
Abelard	Eloise
\forall	\exists

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

I	II
Abelard	Eloise
\forall	\exists
"Spoiler"	"Duplicator"

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

I	II
Abelard	Eloise
\forall	\exists
"Spoiler"	"Duplicator"

- for some fixed length n (a natural number) or ω (continues "forever")

The Ehrenfeucht-Fraïssé Game

- played on two structures
- by two players:

I	II
Abelard	Eloise
\forall	\exists
"Spoiler"	"Duplicator"

- for some fixed length n (a natural number) or ω (continues "forever")
- We denote by $\mathrm{EF}_{n}(\mathfrak{A}, \mathfrak{B})$ the EF game of length n between structures \mathfrak{A} and \mathfrak{B}.

Example

Example

Example

Example

Example

Example

Example

Example

- Player II wins if the mapping $a_{i} \mapsto b_{i}$ is a partial isomorphism; otherwise Player I wins.
- Player II wins if the mapping $a_{i} \mapsto b_{i}$ is a partial isomorphism; otherwise Player I wins.
- A partial isomorphism between two structures \mathfrak{A} and \mathfrak{B} is a partial function $f: \mathfrak{A} \rightarrow \mathfrak{B}$ that preserves the mathematical structure of \mathfrak{A} (and of \mathfrak{B})
- Player II wins if the mapping $a_{i} \mapsto b_{i}$ is a partial isomorphism; otherwise Player I wins.
- A partial isomorphism between two structures \mathfrak{A} and \mathfrak{B} is a partial function $f: \mathfrak{A} \rightarrow \mathfrak{B}$ that preserves the mathematical structure of \mathfrak{A} (and of \mathfrak{B})
- Examples:
(1) If $\mathfrak{A}=(G, \cdot)$ and $\mathfrak{B}=\left(G^{\prime}, \cdot\right)$ are groups, then $f: G \rightarrow G^{\prime}$ is a partial isomorphism iff it is an injective partial homomorphism (in the algebraic sense)
- Player II wins if the mapping $a_{i} \mapsto b_{i}$ is a partial isomorphism; otherwise Player I wins.
- A partial isomorphism between two structures \mathfrak{A} and \mathfrak{B} is a partial function $f: \mathfrak{A} \rightarrow \mathfrak{B}$ that preserves the mathematical structure of \mathfrak{A} (and of \mathfrak{B})
- Examples:
(1) If $\mathfrak{A}=(G, \cdot)$ and $\mathfrak{B}=\left(G^{\prime}, \cdot\right)$ are groups, then $f: G \rightarrow G^{\prime}$ is a partial isomorphism iff it is an injective partial homomorphism (in the algebraic sense)
(2) If $\mathfrak{A}=(A,<)$ and $\mathfrak{B}=(B,<)$ are linear orders, then $f: A \rightarrow B$ is a partial isomorphism iff for all $a, a^{\prime} \in \operatorname{dom}(f)$

$$
a<a^{\prime} \Longleftrightarrow f(a)<f\left(a^{\prime}\right)
$$

Properties of the Game

- The game is determined: one of the players has a winning strategy
- If II wins a game of length n, then she wins the game of length m for any $m \leq n$
- If I wins a game of length n, then he wins the game of length m for any $m \geq n$

Elementary Equivalence

Two structures \mathfrak{A} and \mathfrak{B} are elementarily equivalent if they have the same first-order theory,

Elementary Equivalence

Two structures \mathfrak{A} and \mathfrak{B} are elementarily equivalent if they have the same first-order theory, i.e. for every (finitary) statement φ consisting of

- atomic statements, e.g. $x=y$ or $0<n$,
- "and",
- "or",
- "not",
- "if . . . then",
- "if and only if",
- "for every element x...", and
- "there is an element x such that. . .",
φ is true in \mathfrak{A} if and only if it is true in \mathfrak{B}.

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings "Elementary" properties:
- "there are infinitely many elements"
- "every polynomial has a root", in the language of rings
- "there are no torsion elements", in the language of groups

First-order statements:

- "there are at least 7 elements"
- "there is a clique of 5 elements", in the language of graphs
- "every non-zero element is invertible", in the language of rings
"Elementary" properties:
- "there are infinitely many elements"
- "every polynomial has a root", in the language of rings
- "there are no torsion elements", in the language of groups
"Non-elementary" properties:
- "there are only finitely many elements"
- "the graph is connected", in the language of graphs
- "every bounded non-empty set has a supremum", in the language of real closed fields

Theorem

\mathfrak{A} and \mathfrak{B} are elementarily equivalent if and only if, for every $n \in \mathbb{N}$, II has a winning strategy in the EF game of length n between \mathfrak{A} and \mathfrak{B}.

For proof, see e.g. J. Väänänen, Models and Games.

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example

$\mathbb{Z}+\mathbb{Z}$

\mathbb{Z}

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \bullet \bullet \bullet a^{a_{0}} a_{2} a_{4} \ldots \ldots \ldots{ }^{a_{3}} a_{1} \bullet \bullet \bullet \bullet
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \cdot \bullet \bullet a_{0} a_{2} a_{4} \ldots \ldots \ldots a_{5} a_{3} a_{1} \cdot \ldots \cdot{ }^{\circ} \cdot \ldots \ldots
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \cdot{ }^{a_{0}} a_{2} a_{4} \ldots \ldots \ldots a_{5} a_{3} a_{1} \bullet \bullet \cdot \bullet \cdot \ldots
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \cdot \bullet \bullet \stackrel{ }{0}_{0}^{a_{2}} a_{4} \ldots \ldots \cdot \overbrace{a_{7}}^{a_{5} a_{3} a_{1}} \bullet \bullet \bullet \bullet \bullet \ldots \ldots
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \cdot \bullet^{a_{0}} a_{2} a_{4} \ldots \ldots \cdot{ }^{a_{5}} a_{3} a_{1} \bullet \bullet \bullet \bullet \cdot \ldots \ldots
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

Example

$$
\mathbb{Z}+\mathbb{Z}
$$

The long game

- The EF game $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ of length ω captures similarity of structures \mathfrak{A} and \mathfrak{B} in a more complicated logic called $\mathcal{L}_{\infty \omega}$ where infinite conjunctions and disjunctions are allowed.

The long game

- The EF game $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ of length ω captures similarity of structures \mathfrak{A} and \mathfrak{B} in a more complicated logic called $\mathcal{L}_{\infty \omega}$ where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z}+\mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.

The long game

- The EF game $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ of length ω captures similarity of structures \mathfrak{A} and \mathfrak{B} in a more complicated logic called $\mathcal{L}_{\infty \omega}$ where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z}+\mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.
- It can be expressed in $\mathcal{L}_{\infty \omega}$ as follows:

$$
\exists x \exists y \bigwedge_{n \in \mathbb{N}} \exists z_{0} \ldots \exists z_{n-1}\left(x<z_{0}<\cdots<z_{n-1}<y\right)
$$

The long game

- The EF game $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ of length ω captures similarity of structures \mathfrak{A} and \mathfrak{B} in a more complicated logic called $\mathcal{L}_{\infty \omega}$ where infinite conjunctions and disjunctions are allowed.
- The following statement is true in $\mathbb{Z}+\mathbb{Z}$ but not in \mathbb{Z} : there are elements x and y such that there are infinitely many elements between x and y.
- It can be expressed in $\mathcal{L}_{\infty \omega}$ as follows:

$$
\exists x \exists y \bigwedge_{n \in \mathbb{N}} \exists z_{0} \ldots \exists z_{n-1}\left(x<z_{0}<\cdots<z_{n-1}<y\right)
$$

- In particular, this sentence is in $\mathcal{L}_{\omega_{1} \omega}$ where only countably infinite conjunctions and disjunctions are allowed.

Lemma

If \mathfrak{A} and \mathfrak{B} are countable, then $\mathfrak{A} \cong \mathfrak{B}$ if and only if II has a winning strategy in $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$.

Proof.

Let $a_{i}, i \in \mathbb{N}$, enumerate \mathfrak{A} and $b_{i}, i \in \mathbb{N}$, enumerate \mathfrak{B}. If II has a winning strategy, then on round i, I can just play a_{i} when i is even and b_{i} when i is odd, and the resulting function is an isomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

Tool: Ordinal Numbers

Definition

A linear order $(X,<)$ is a well-order if every non-empty subset of X has a $<$-least element.

Tool: Ordinal Numbers

Definition

A linear order $(X,<)$ is a well-order if every non-empty subset of X has a <-least element.

Lemma

$(X,<)$ is a well-order if and only if there is no infinite decreasing sequence $x_{0}>x_{1}>\ldots$ in X.

- An ordinal number is a particularly nice representative of an isomorphism class of well-orders.
- An ordinal is well-ordered by the relation \in.
- Every well-order X is isomorphic to a unique ordinal, the order-type of X.
- One can do induction and recursion on ordinals.

Examples

- ω is the order type of $(\mathbb{N},<)$:

Examples

- ω is the order type of $(\mathbb{N},<)$:

- $\omega+1$ is the order type of the set $\{0,1\} \cup\left\{\left.\frac{n-1}{n} \right\rvert\, n>1\right\}$, where the order is the ordinary ordering of real numbers:

$$
\omega+1
$$

Examples

- ω is the order type of $(\mathbb{N},<)$:

- $\omega+1$ is the order type of the set $\{0,1\} \cup\left\{\left.\frac{n-1}{n} \right\rvert\, n>1\right\}$, where the order is the ordinary ordering of real numbers:

$$
\omega+1
$$

- $\omega+n$ is defined as one would expect
- $\omega+\omega$ (also known as $\omega \cdot 2$) is the order type of $\mathbb{N}+\mathbb{N}$:

Cardinal Numbers

- An ordinal κ is called a cardinal number if there are no $\alpha<\kappa$ such that there is a bijection $\alpha \rightarrow \kappa$.
- Examples: ω is a cardinal but $\omega+1$ is not.
- The next cardinal after ω is ω_{1}, the first uncountable ordinal.
- If κ is a cardinal, we denote by κ^{+}the least cardinal $>\kappa$.
- For every set X there is a unique cardinal κ such that there is a bijection $\kappa \rightarrow X$. Such κ is called the cardinality of X and denoted by $|X|$.

Example of Transfinite Recursion

Theorem

Every vector space has a basis.

Proof.

Let V be a vector space and let $v_{\alpha}, \alpha<\kappa$, enumerate V, where $\kappa=|V|$. Then the set

$$
\left\{v_{\alpha} \mid \alpha<\kappa, v_{\alpha} \notin \operatorname{span}\left(\left\{v_{\beta} \mid \beta<\alpha\right\}\right)\right\}
$$

is a basis of V.

Dynamic EF Games

- A dynamic Ehrenfeucht-Fraïssé game is similar to the ordinary EF game, but it has an ordinal clock that ticks downwards.
- We denote by $\operatorname{EFD}_{\alpha}(\mathfrak{A}, \mathfrak{B})$ a game with clock α between the structures \mathfrak{A} and \mathfrak{B}.
- Each round n I chooses some $\alpha_{n}<\alpha$ such that $\alpha_{n+1}<\alpha_{n}$ for every n. The game ends on the round n when I chooses $\alpha_{n}=0$.

Example with clock $\omega+2$

I plays:

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: $\omega+1$

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: $\omega+1$

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: ω

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: ω

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: 13

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: 13

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: 12

$$
\mathbb{Z}+\mathbb{Z}
$$

\mathbb{Z}

Example with clock $\omega+2$

I plays: 12

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 11

$$
\mathbb{Z}+\mathbb{Z}
$$

$\ldots \ldots{ }^{a_{0}} a_{2} a_{4} \ldots \ldots \ldots{ }^{a_{3}} a_{1} \bullet \bullet \cdot \ldots .$.

Example with clock $\omega+2$

I plays: 11

$$
\mathbb{Z}+\mathbb{Z}
$$

$\ldots \ldots{ }^{a_{0}} a_{2} a_{4} \ldots \ldots \ldots{ }^{a_{3}} a_{1} \bullet \bullet \cdot \ldots .$.

Example with clock $\omega+2$

I plays: 10

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 10

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 9

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 9

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 8

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 8

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \cdot a^{a_{0}} a_{2} a_{4} \ldots \ldots \cdot a_{7} a_{5} a_{3} a_{1} \bullet \bullet \cdot \bullet \cdot \cdots
$$

Example with clock $\omega+2$

I plays: 7

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \ldots \cdot \bullet \bullet \bullet \stackrel{a_{0}}{a_{2}} \stackrel{a}{4}_{a_{6}}^{a_{8}} \cdot \stackrel{\rightharpoonup}{a 7}_{a_{5}}^{a_{3}} \stackrel{a_{1}}{\bullet} \bullet \bullet \bullet . . .
$$

Example with clock $\omega+2$

I plays: 7

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 6

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 6

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 5

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \cdot a_{0} a_{2} a_{4} a_{8} \ldots \ldots \cdot a_{9} a_{5} a_{3} a_{1} \cdot a_{7} \bullet^{\circ} \cdot \bullet \cdot \ldots
$$

Example with clock $\omega+2$

I plays: 5

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 4

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 4

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 3

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 3

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 2

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 2

$$
\mathbb{Z}+\mathbb{Z}
$$

Example with clock $\omega+2$

I plays: 1

$$
\mathbb{Z}+\mathbb{Z}
$$

$$
\ldots \cdot a_{0} a_{2} a_{4} a_{8} \ldots a_{6} \cdot a_{9} a_{5} a_{3} a_{1} \cdot a_{7} \bullet^{\circ} \cdot \bullet \cdot \ldots
$$

Dynamic Games vs. the Infinite Game

Theorem
Player II has a winning strategy in $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$ if and only if she has a winning strategy in $\operatorname{EFD}_{\alpha}(\mathfrak{A}, \mathfrak{B})$ for every $\alpha<(|\mathfrak{A}|+|\mathfrak{B}|)^{+}$.

For a proof, see again the book by Väänänen.

Dynamic Games vs. Logic

- For any structure \mathfrak{A}, there is a least ordinal α, called the Scott rank of \mathfrak{A}, such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^{n}$ and II has a winning strategy in

$$
\operatorname{EFD}_{\alpha}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

then also II has a winning strategy in

$$
\operatorname{EFD}_{\alpha+1}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

Dynamic Games vs. Logic

- For any structure \mathfrak{A}, there is a least ordinal α, called the Scott rank of \mathfrak{A}, such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^{n}$ and II has a winning strategy in

$$
\mathrm{EFD}_{\alpha}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

then also II has a winning strategy in

$$
\operatorname{EFD}_{\alpha+1}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

- For every structure \mathfrak{A}, tuple $\bar{a} \in \mathfrak{A}^{n}$ and ordinal α, there is a formula $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x})$ of $\mathcal{L}_{\infty \omega}$ such that for any other structure \mathfrak{B} and $\bar{b} \in \mathfrak{B}^{n}$, $\mathfrak{B} \mid=\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{b}) \Longleftrightarrow$ II has a winning strategy in $\operatorname{EFD}_{\alpha}((\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b}))$.

Dynamic Games vs. Logic

- For any structure \mathfrak{A}, there is a least ordinal α, called the Scott rank of \mathfrak{A}, such that whenever $\bar{a}, \bar{b} \in \mathfrak{A}^{n}$ and II has a winning strategy in

$$
\mathrm{EFD}_{\alpha}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

then also II has a winning strategy in

$$
\operatorname{EFD}_{\alpha+1}((\mathfrak{A}, \bar{a}),(\mathfrak{A}, \bar{b}))
$$

- For every structure \mathfrak{A}, tuple $\bar{a} \in \mathfrak{A}^{n}$ and ordinal α, there is a formula $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x})$ of $\mathcal{L}_{\infty \omega}$ such that for any other structure \mathfrak{B} and $\bar{b} \in \mathfrak{B}^{n}$, $\mathfrak{B} \models \varphi_{\mathfrak{A}}^{\bar{A}}(\bar{b}) \Longleftrightarrow$ II has a winning strategy in $\operatorname{EFD}_{\alpha}((\mathfrak{A}, \bar{a}),(\mathfrak{B}, \bar{b}))$.
- If $\alpha<\omega_{1}$, then $\varphi_{\mathfrak{A}}^{\bar{a}}(\bar{x}) \in \mathcal{L}_{\omega_{1} \omega}$.

Scott's Isomorphism Theorem

Theorem
For every countable \mathfrak{A}, there exists a sentence $\sigma_{\mathfrak{A}}$ of $\mathcal{L}_{\omega_{1} \omega}$ such that for any other countable \mathfrak{B},

$$
\mathfrak{B} \models \sigma_{\mathfrak{A}} \Longleftrightarrow \mathfrak{B} \cong \mathfrak{A} .
$$

Scott's Isomorphism Theorem

Theorem

For every countable \mathfrak{A}, there exists a sentence $\sigma_{\mathfrak{2}}$ of $\mathcal{L}_{\omega_{1} \omega}$ such that for any other countable \mathfrak{B},

$$
\mathfrak{B} \models \sigma_{\mathfrak{A}} \Longleftrightarrow \mathfrak{B} \cong \mathfrak{A} .
$$

Proof sketch.

Using the formulas $\varphi_{\mathfrak{2}}^{\bar{a}}(\bar{x})$, construct a sentence $\sigma_{\mathfrak{2}}$ that expresses that "II can win enough dynamic games" (up until the Scott rank of \mathfrak{A}). Then $\mathfrak{B} \models \sigma_{\mathfrak{R}}$ iff II wins $\mathrm{EF}_{\omega}(\mathfrak{A}, \mathfrak{B})$.

Approximate Games for Metric Structures

To summarize:

- Player II has a winning strategy in a game of infinite length between two countable structures if and only if the structures are isomorphic.
- The infinite game can be approximated by games of dynamic length.
- Dynamic games correspond to formulas of a certain logic.
- Thus we can describe a countable structure up to isomorphism using said logic.

Metric structures

For metric structures, such as

- metric spaces,
- Banach spaces, and
- Hilbert spaces,
we want
- an infinite game such that two separable structures are isomorphic if and only if II has a winning strategy,
- dynamic games for approximating the infinite game, and
- formulas corresponding the dynamic games.

Linear Isomorphisms of Banach Spaces

- If \mathfrak{A} and \mathfrak{B} are Banach spaces, a bijection $f: \mathfrak{A} \rightarrow \mathfrak{B}$ is a linear isomorphism if it is linear and bi-Lipschitz.
- For $\varepsilon \geq 0$, if f is a linear e^{ε}-bi-Lipschitz function, then we call f an ε-isomorphism.
- Consider as atomic formulas expressions

$$
\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1 \quad \text { and } \quad\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1
$$

where $c_{i} \in \mathbb{Q}$.

- Consider as atomic formulas expressions

$$
\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1 \quad \text { and } \quad\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1
$$

where $c_{i} \in \mathbb{Q}$.

- An atomic formula $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1$ is k-good $($ for $k \in \mathbb{N})$ if $n=k$ and $\left|c_{i}\right| \leq k$ for all $i<n$, and similarly for $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1$.
- Consider as atomic formulas expressions

$$
\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1 \quad \text { and } \quad\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1
$$

where $c_{i} \in \mathbb{Q}$.

- An atomic formula $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1$ is k-good $($ for $k \in \mathbb{N})$ if $n=k$ and $\left|c_{i}\right| \leq k$ for all $i<n$, and similarly for $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1$.
- We define the ε-approximation of $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1$ (for $\varepsilon \geq 0$) to be

$$
\left\|e^{-\varepsilon} \sum_{i=0}^{n-1} c_{i} x_{i}\right\| \leq 1
$$

and of $\left\|\sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1$ to be

$$
\left\|e^{\varepsilon} \sum_{i=0}^{n-1} c_{i} x_{i}\right\| \geq 1
$$

We denote by $\operatorname{Appr}(\varphi, \varepsilon)$ the ε-approximation of φ,

Approximate Games

- If \mathfrak{A} and \mathfrak{B} are two Banach spaces and $D_{\mathfrak{A}} \subseteq \mathfrak{A}$ and $D_{\mathfrak{B}} \subseteq \mathfrak{B}$ are dense sets and $\varepsilon \geq 0$, then the game

$$
\operatorname{EF}_{\omega, \varepsilon}^{\mathfrak{A}, \mathfrak{B}}\left(D_{\mathfrak{A}}, D_{\mathfrak{B}}\right)
$$

is played like the ordinary EF game between two sets but in addition in each round i, I picks some $\varepsilon_{i}>\varepsilon$.

- In the end II wins if for every $k \in \mathbb{N}$ and k-good formula $\varphi\left(x_{0}, \ldots, x_{k-1}\right)$,

$$
\mathfrak{A} \models \varphi\left(a_{i_{0}}, \ldots, a_{i_{k-1}}\right) \Longrightarrow \mathfrak{B} \models \operatorname{Appr}\left(\varphi, \varepsilon_{k}\right)\left(b_{i_{0}}, \ldots, b_{i_{k-1}}\right)
$$

for all $i_{0}, \ldots, i_{k-1} \geq k$.

Theorem (Hirvonen-P.)

Let \mathfrak{A} and \mathfrak{B} be separable Banach spaces and $\varepsilon \geq 0$. Then II has a winning strategy in $\mathrm{EF}_{\omega, \varepsilon}^{\mathfrak{2}, \mathfrak{B}}(\mathfrak{A}, \mathfrak{B})$ if and only if there exists an ε-isomorphism $\mathfrak{A} \rightarrow \mathfrak{B}$.

```
Theorem (Hirvonen-P.)
Let \mathfrak{A}\mathrm{ and }\mathfrak{B}\mathrm{ be separable Banach spaces and }\varepsilon\geq0\mathrm{ . Then II has a}
winning strategy in }\mp@subsup{\textrm{EF}}{\omega,\varepsilon}{\mathfrak{A},\mathfrak{B}}(\mathfrak{A},\mathfrak{B})\mathrm{ if and only if there exists an
\varepsilon-isomorphism \mathfrak{A}->\mathfrak{B}\mathrm{ .}
```


Proof sketch.

If II has a winning strategy, let $D_{\mathfrak{A}} \subseteq \mathfrak{A}$ and $D_{\mathfrak{B}} \subseteq \mathfrak{B}$ be countable dense sets. We let I play all the elements of both dense sets as his moves in the infinite game. Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ and $\left(b_{i}\right)_{i \in \mathbb{N}}$ denote the elements played in each space. Now one can prove that if $\left(i_{k}\right)_{k \in \mathbb{N}}$ is an increasing sequence of indices, then $\left(a_{i_{k}}\right)_{k \in \mathbb{N}}$ is Cauchy iff $\left(b_{i_{k}}\right)_{k \in \mathbb{N}}$ is Cauchy. Then the mapping that maps limit points of $\left(a_{i}\right)_{i \in \mathbb{N}}$ to the limit points of $\left(b_{i}\right)_{i \in \mathbb{N}}$ is an ε-isomorphism.

Dynamic Games and Formulas

- We can define dynamic ε-games corresponding to the infinite game and get similar results.
- Similarly to the classical case, we can build formulas corresponding to the dynamic games.
- We get an ε-Scott sentence of a Banach space \mathfrak{A}. Interestingly, this sentence might not be an element of $\mathcal{L}_{\omega_{1} \omega}$, i.e. it could contain uncountable conjunctions or disjunctions.
- However, it is an element of $\mathcal{L}_{\omega_{2} \omega}$ (so the conjunctions and disjunctions are not that long).
- Can't be bothered with the details, see the paper if you're somehow still interested. ;)

References for the Curious

围 Itaï Ben Yaacov，Michal Doucha，André Nies，and Todor Tsankov． Metric Scott analysis．
Adv．Math．，318：46－87， 2017.
C．Henson．
Nonstandard hulls of Banach spaces．
Israel Journal of Mathematics，25：108－144， 1976.
國 Åsa Hirvonen and Joni Puljujärvi．
Games and Scott sentences for positive distances between metric structures．
arXiv e－prints，page arXiv：2102．00993，June 2021.
圊 Jouko Väänänen．
Models and games，volume 132 of Cambridge Studies in Advanced Mathematics．
Cambridge University Press，Cambridge， 2011.

