

Invariant measures: What and why

Petri Laarne DOMAST Seminar, University of Helsinki 6 May 2022

Outline

- 1. Finite dimensions
 - State space and ODEs
 - Invariant measure
 - Recurrence theorem
- 2. Nonlinear Schrödinger equation
 - Solution via Fourier series
 - The problem statement
- 3. Random initial data
 - Intuitive construction
 - Sobolev spaces
- 4. Invariant measure for NLS
 - Truncation trick
 - The approximation
 - Improved regularity theory
 - Recurrence theorem

Part 1: Finite dimensions Basic definitions

State space: pendulum

State space: pendulum with friction

Invariant measure

No friction: invariant

Friction: not invariant

Same formally

Definition

Let $X \subset \mathbb{R}^d$ be the *state space* of the system, and μ a measure on it. A *flow* $\Phi_t(x) \colon X \times \mathbb{R} \to X$ is μ -invariant if

$$\mu(\Phi_t(A)) = \mu(A)$$
 for all measurable $A \subset X$ and $t \in \mathbb{R}$.

We assume Φ to be bijective and continuous.

Recurrence theorem

Theorem (Poincaré) Assume that $\mu(X) < \infty$. If $\mu(A) > 0$, then there exist infinitely many $t \in \mathbb{R}$ such that

 $\mu\left(\Phi_t(A)\cap A\right)>0.$

That is, the flow returns to any region of initial data.

Proof.

If there wasn't, then we'd have

$$\mu\left(\bigcup_{t\in\mathbb{N}}\Phi_t(A)\right)=\sum_{t\in\mathbb{N}}\mu(\Phi_t(A))=\infty,$$

a contradiction. Repeat with $\Phi_t(A)$ as initial data.

Theorem (Liouville)

Let Φ be a Hamiltonian flow on \mathbb{R}^d . Then Φ is invariant w.r.t. Lebesgue dx on \mathbb{R}^d .

Hamiltonian H

H corresponds to the "total energy" of the system and is conserved by $\Phi.$ Then $\mu(x)=f(H(x))\,\mathrm{d}x$ is invariant:

$$\mu(\Phi_t(A)) = \int_{\Phi_t(A)} f(H(x)) \, \mathrm{d}x = \int_A f(H(\Phi_t(x))) \, \mathrm{d}x = \int_A f(H(x)) \, \mathrm{d}x = \mu(A).$$

Part 2: Nonlinear Schrödinger equation A wave-like PDE, and some Fourier analysis

The protagonist

Nonlinear Schrödinger equation

$$\begin{cases} i\partial_t u(x,t) + \partial_{xx} u(x,t) = \pm |u(x,t)|^2 u(x,t), \\ u(x,0) = u_0(x), \end{cases}$$

where u_0 is a complex function on $\mathbb{T} = [0, 2\pi]$.

- Complex-valued
- Describes waves in e.g. Bose–Einstein condensate
- Dispersive: speed of sound depends on frequency
- \blacktriangleright \pm causes or prevents blow-up

Solving linear Schrödinger

$$i\partial_t u(x,t) + \partial_{xx} u(x,t) = 0.$$

Take Fourier transform in space and time:

$$i(i\vartheta)\hat{u}(k,\vartheta) + (ik)^2\hat{u}(k,\vartheta) = 0.$$

Combine common factors:

$$(\vartheta + k^2)\hat{u}(k,\vartheta) = 0.$$

This implies $\operatorname{supp} \hat{u} \subset \{(k, -k^2)\}$. So \hat{u} depends on k only \implies same as $\hat{u_0}$. Inverse transform:

$$u(x,t) = \sum_{k \in \mathbb{Z}} e^{ikx - ik^2 t} \hat{u}_0(k) \eqqcolon e^{it\Delta} u_0(x).$$

Solving nonlinear Schrödinger

$$\begin{cases} i\partial_t u(x,t) + \partial_{xx} u(x,t) = \pm |u(x,t)|^2 u(x,t), \\ u(x,0) = u_0(x). \end{cases}$$

Linear case solved by $e^{it\Delta}u_0$. Nonlinear case by Duhamel principle:

$$u(x,t) = e^{it\Delta}u_0 \pm \int_0^t e^{i(t-s)\Delta} |u(x,t)|^2 u(x,t) \,\mathrm{d}s.$$

Fixed-point iteration converges in suitable space, here $L^4(\mathbb{T} \times [0, \tau])$

- ► Only valid up to time τ (small)
- Details are awful (major opening in analytic number theory)

Global solution

Theorem (Local solution)

Given $u_0 \in L^2(\mathbb{T})$, unique solution u(x,t) up to time $\tau \simeq ||u_0||_2^{-C}$.

Theorem (Conservation of mass)

If u solves NLS, then $\|u(\cdot,t)\|_2 = \|u_0\|_2$ for all $t \in \mathbb{R}$.

Corollary

Given $u_0 \in L^2(\mathbb{T})$, there is unique u(x,t) for all $t \in \mathbb{R}$.

Theorem (Conservation of mass)

If u solves NLS, then $\|u(\cdot,t)\|_2 = \|u_0\|_2$ for all $t \in \mathbb{R}$.

Proof.

$$\partial_t \|u(\cdot,t)\|_2^2 = \int_{\mathbb{T}} \partial_t \left[u(x,t)\overline{u(x,t)}\right] \mathrm{d}x,$$

use product rule and solve $\partial_t u$ from NLS. Everything cancels out.

Conservation laws, II

Theorem (Conservation of energy)

If u solves NLS, then its Hamiltonian satisfies $H(u(\cdot,t)) = H(u(\cdot,0))$ for all $t \in \mathbb{R}$.

Invariant measure for NLS

- ▶ Initial data $u_0 \sim D$, where D some random distribution (how?)
- Want $u_t \sim \mathcal{D}$ for all $t \in \mathbb{R}$
- Two conservation laws at our disposal
- If Liouville did hold in infinite dimensions, we'd have

f(H(u,t)) dx invariant

But a Lebesgue measure dx cannot exist on $\mathbb{C}^{\mathbb{Z}}$!

Part 3: Random initial data Measures on function spaces, and a bit of Sobolev

Normal distribution

▶ Real normal distribution $\mathcal{N}(\text{mean}, \text{variance})$

- ▶ Complex: X + iY where $X, Y \sim \mathcal{N}(0, \text{variance}/2)$ independent
- Linear combination of normal distributions still normal

Idea for our random functions

Fourier series with random coefficients

$$\hat{u}_0(k) \sim \mathcal{N}(0, 1/k^?)$$

so that the initial function is

$$u_0(x) = \sum_{k \in \mathbb{Z}} \frac{e^{ikx}}{k!} g_k,$$

where g_k independent complex normal with variance 1.

Convergence

- ▶ Need ? such that the series converges (almost everywhere, almost surely)
- ▶ Also do something about k = 0

Convergence of series

Theorem (Khintchine inequality)

Let (b_k) be a fixed sequence and (g_k) complex Gaussian. Then

$$\mathbb{E}\left[\sum_{k\in\mathbb{Z}}b_kg_k\right]^q \lesssim q^{q/2} \,\|(b_k)\|_{\ell^2}^q\,,\qquad 1\leq q<\infty.$$

Our series

We have $\hat{u_0}(k) \sim \mathcal{N}(0, 1/k^{lpha})$, and by choosing q=2 in the above we get

$$\mathbb{E} \left\| u_0 \right\|_2^2 = \mathbb{E} \left\| \sum_{k \in \mathbb{Z}} \frac{e^{ikx}}{k^{\alpha}} g_k \right\|_2^2 \lesssim \sum_{k \in \mathbb{Z}} \left| \frac{e^{ikx}}{k^{\alpha}} \right|^2$$

So $u_0 \in L^2$ almost surely if $2\alpha > 1$.

Fractional Sobolev spaces

Idea Usual Sobolev norm defined on ${\mathbb T}$ by

$$||u||_{H^1} = \left[||u||_{L^2}^2 + ||\partial_x u||_{L^2}^2 \right]^{1/2}.$$

But by Fourier transform

$$||u||_{L^2}^2 + ||\partial_x u||_{L^2}^2 = \sum_{k \in \mathbb{Z}} |\hat{u}(k)|^2 + |(ik)\hat{u}(k)|^2 = \sum_{k \in \mathbb{Z}} (1+k^2) |\hat{u}(k)|^2.$$

Definition

Function u belongs to H^s if $(1+k^2)^{s/2}\,\hat{u}(k)$ defines an L^2 function.

A bit more regularity

Random series in H^s Put $g_k \sim \mathcal{N}(0, 1/k)$. Fractional Sobolev norm

$$\mathbb{E} \|u_0\|_{H^s}^2 = \mathbb{E} \left\| \sum_{k \in \mathbb{Z}} (1+k^2)^{s/2} \frac{e^{ikx}}{k} g_k \right\|_2^2 \lesssim \sum_{k \in \mathbb{Z}} \left| \frac{e^{ikx}}{k^{1-s}} \right|^2$$

So $u_0 \in H^s$ almost surely if $2 - 2s > 1 \implies s < 1/2$.

Intuition: u_0 has "almost half a derivative"

- We just defined a *Brownian bridge* on \mathbb{T}
- Remark: we're still glossing over k = 0

Part 4: Invariant measure for NLS Putting it all together

What we've seen so far

Problem: Find ${\mathcal D}$ such that

$$\begin{cases} i\partial_t u(x,t) + \partial_{xx} u(x,t) = \pm \left| u(x,t) \right|^2 u(x,t), \\ u(x,t) \sim \mathcal{D} \quad \text{for all } t \in \mathbb{R}. \end{cases}$$

Conservation laws

- \blacktriangleright L^2 norm and Hamiltonian conserved
- $f(H(\cdot)) dx$ invariant if finite dimension (Liouville)

Gaussian measures

$$u_0(x) = \sum_{k \in \mathbb{Z}} e^{ikx} rac{g_k}{k}$$
 is a random function of regularity $H^{1/2-arepsilon}$

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure $d\mu(x) = \exp(-\beta H(x)) dx$. For NLS the Hamiltonian is

$$H(u) = \mp \frac{1}{p} \|u\|_{4}^{4} + \frac{1}{2} \|\partial_{x}u\|_{2}^{2}.$$

Warning: hand-waving!

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure $d\mu(x) = \exp(-\beta H(x)) dx$. For NLS the Hamiltonian is

$$H(u) = \mp \frac{1}{p} \|u\|_{4}^{4} + \frac{1}{2} \|\partial_{x}u\|_{2}^{2}.$$

Warning: hand-waving!

Infinitely many Fourier coefficients

$$\mathrm{d}\mu(u) = \exp\left(\pm\frac{\beta}{p} \|u\|_4^4\right) \exp\left(-\frac{\beta}{2} \|\partial_x u\|_2^2\right) \prod_{k \in \mathbb{Z}} \mathrm{d}\hat{u}(k).$$

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure $d\mu(x) = \exp(-\beta H(x)) dx$. For NLS the Hamiltonian is

$$H(u) = \mp \frac{1}{p} \|u\|_{4}^{4} + \frac{1}{2} \|\partial_{x}u\|_{2}^{2}.$$

Warning: hand-waving!

Move the first term to Fourier space:

$$\mathrm{d}\mu(u) = \exp\left(\pm\frac{\beta}{p} \|u\|_4^4\right) \exp\left(-\frac{\beta}{2}\sum_{k\in\mathbb{Z}} |(ik)\hat{u}(k)|^2\right) \prod_{k\in\mathbb{Z}} \mathrm{d}\hat{u}(k).$$

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure $d\mu(x) = \exp(-\beta H(x)) dx$. For NLS the Hamiltonian is

$$H(u) = \mp \frac{1}{p} \|u\|_{4}^{4} + \frac{1}{2} \|\partial_{x}u\|_{2}^{2}.$$

Warning: hand-waving!

A wild Gaussian measure appears!

$$\mathrm{d} \mu(u) = \exp\left(\pmrac{eta}{p} \left\|u
ight\|_4^4
ight) \prod_{k\in\mathbb{Z}} \exp\left(-rac{eta \left|\hat{u}(k)
ight|^2}{2(1/k)}
ight) \mathrm{d} \hat{u}(k).$$

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure $d\mu(x) = \exp(-\beta H(x)) dx$. For NLS the Hamiltonian is

$$H(u) = \mp \frac{1}{p} \|u\|_{4}^{4} + \frac{1}{2} \|\partial_{x}u\|_{2}^{2}.$$

Warning: hand-waving!

Let's just ignore k = 0 (actually you choose Lebesgue on an interval):

$$d\mu(u) = \exp\left(\pm\frac{\beta}{p} \|u\|_{4}^{4}\right) \prod_{k \neq 0} \exp\left(-\frac{\beta |\hat{u}(k)|^{2}}{2(1/k)}\right) d\hat{u}(k).$$

Some approximation required

Truncated measure Define a measure on \mathbb{C}^{2N} by

$$\mathrm{d}\mu_N(u) = \exp\left(\pm\frac{\beta}{p} \left\| P_N u \right\|_4^4 \right) \prod_{\substack{k \neq 0 \\ |k| \le N}} \exp\left(-\frac{\beta \left|\hat{u}(k)\right|^2}{2(1/k)}\right) \mathrm{d}\hat{u}(k),$$

where P_N projection to frequencies $|k| \leq N$. Liouville \implies invariant!

Approximation

- Extend this to $\mathbb{C}^{\mathbb{Z}\setminus\{0\}}$ with (unweighted) Gaussian part
- Uniformly bounded in $N \implies$ convergence to μ
- Details technical (measure bound + bounds for norm growth in time)

Some approximation required

Truncated measure Define a measure on \mathbb{C}^{2N} by

$$\mathrm{d}\mu_N(u) = \exp\left(\pm\frac{\beta}{p} \left\| \mathbf{P}_N u \right\|_4^4\right) \prod_{\substack{k \neq 0 \\ |k| \le N}} \exp\left(-\frac{\beta \left|\hat{u}(k)\right|^2}{2(1/k)}\right) \mathrm{d}\hat{u}(k),$$

where P_N projection to frequencies $|k| \leq N$. Liouville \implies invariant!

Invariance

Split $u_0 = P_N u_0 + P_{>N} u_0$ where $P_N u_0 \sim \mu_N$ and $P_{>N} u_0 \sim$ Gaussian, both parts invariant under truncated equation

$$i\partial_t u(x,t) + \partial_{xx} u(x,t) = \pm P_N \left[\left| P_N u(x,t) \right|^2 P_N u(x,t) \right]$$

Why would you do this? I

Improved regularity

Let $u_0 \in H^{1/2-\varepsilon}$. Then there is a $H^{1/2-\varepsilon}$ solution to NLS with this initial data almost surely w.r.t. the measure.

Take a neighbourhood of u_0 , and you get solutions.

Growth bound

As a byproduct, for any $\delta>0$ there is set of probability $1-\delta$ where

$$\|v(\cdot,t)\|_{H^{1/2-\varepsilon}} \lesssim 1 + \sqrt{\log\left(\frac{1+|t|}{\delta}\right)}.$$

Why would you do this? II

Theorem (Poincaré) If $\mu(A) > 0$, then there exist infinitely many $t \in \mathbb{R}$ such that $\mu(\Phi_t(A) \cap A) > 0$. Fermi–Pasta–Ulam–Tsingou paradox: complicated systems are almost periodic!

Further questions

$$\begin{cases} i\partial_t u(x,t) + \partial_{xx} u(x,t) = \pm |u(x,t)|^2 u(x,t), \\ u(x,0) = u_0(x), \quad x \in \mathbb{T} \end{cases}$$

What about...

- dimension greater than 1?
- nonlinearity with higher power?
- fixed potential, or stochastic forcing?
- infinite volume?
- other equations?

You made it to the end!

This talk was based on Laarne: *Periodic nonlinear Schrödinger equation* (MSc thesis, 2021)