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Part 1: Finite dimensions
Basic definitions



State space: pendulum
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State space: pendulum with friction
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Invariant measure
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No friction: invariant Friction: not invariant
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Same formally

Definition
Let X ⊂ Rd be the state space of the system, and µ a measure on it. A flow
Φt(x) : X × R → X is µ-invariant if

µ(Φt(A)) = µ(A) for all measurable A ⊂ X and t ∈ R.

We assume Φ to be bijective and continuous.



Recurrence theorem

Theorem (Poincaré)
Assume that µ(X) < ∞. If µ(A) > 0, then there exist infinitely many t ∈ R such that

µ (Φt(A) ∩A) > 0.

That is, the flow returns to any region of initial data.

Proof.
If there wasn’t, then we’d have

µ

(⋃
t∈N

Φt(A)

)
=
∑
t∈N

µ(Φt(A)) = ∞,

a contradiction. Repeat with Φt(A) as initial data.



How to find invariant measures

Theorem (Liouville)
Let Φ be a Hamiltonian flow on Rd. Then Φ is invariant w.r.t. Lebesgue dx on Rd.

Hamiltonian H
H corresponds to the ”total energy” of the system and is conserved by Φ. Then
µ(x) = f(H(x)) dx is invariant:

µ(Φt(A)) =

∫
Φt(A)

f(H(x)) dx =

∫
A
f(H(Φt(x))) dx =

∫
A
f(H(x)) dx = µ(A).



Part 2: Nonlinear Schrödinger equation
A wave-like PDE, and some Fourier analysis



The protagonist

Nonlinear Schrödinger equation{
i∂tu(x, t) + ∂xxu(x, t) = ± |u(x, t)|2 u(x, t),
u(x, 0) = u0(x),

where u0 is a complex function on T = [0, 2π].
▶ Complex-valued
▶ Describes waves in e.g. Bose–Einstein condensate
▶ Dispersive: speed of sound depends on frequency
▶ ± causes or prevents blow-up



Solving linear Schrödinger

i∂tu(x, t) + ∂xxu(x, t) = 0.

Take Fourier transform in space and time:

i(iϑ)û(k, ϑ) + (ik)2û(k, ϑ) = 0.

Combine common factors:
(ϑ+ k2)û(k, ϑ) = 0.

This implies supp û ⊂ {(k,−k2)}. So û depends on k only =⇒ same as û0.
Inverse transform:

u(x, t) =
∑
k∈Z

eikx−ik2tû0(k) =: e
it∆u0(x).



Solving nonlinear Schrödinger

{
i∂tu(x, t) + ∂xxu(x, t) = ± |u(x, t)|2 u(x, t),
u(x, 0) = u0(x).

Linear case solved by eit∆u0.
Nonlinear case by Duhamel principle:

u(x, t) = eit∆u0 ±
∫ t

0
ei(t−s)∆ |u(x, t)|2 u(x, t) ds.

▶ Fixed-point iteration converges in suitable space, here L4(T× [0, τ ])

▶ Only valid up to time τ (small)
▶ Details are awful (major opening in analytic number theory)



Global solution

Theorem (Local solution)
Given u0 ∈ L2(T), unique solution u(x, t) up to time τ ≃ ∥u0∥−C

2 .

Theorem (Conservation of mass)
If u solves NLS, then ∥u( ·, t)∥2 = ∥u0∥2 for all t ∈ R.

Corollary
Given u0 ∈ L2(T), there is unique u(x, t) for all t ∈ R.



Conservation laws, I

Theorem (Conservation of mass)
If u solves NLS, then ∥u( ·, t)∥2 = ∥u0∥2 for all t ∈ R.

Proof.

∂t ∥u(·, t)∥22 =
∫
T
∂t

[
u(x, t)u(x, t)

]
dx,

use product rule and solve ∂tu from NLS. Everything cancels out.



Conservation laws, II

Theorem (Conservation of energy)
If u solves NLS, then its Hamiltonian satisfies H(u( ·, t)) = H(u( ·, 0)) for all t ∈ R.

Invariant measure for NLS
▶ Initial data u0 ∼ D, where D some random distribution (how?)
▶ Want ut ∼ D for all t ∈ R
▶ Two conservation laws at our disposal
▶ If Liouville did hold in infinite dimensions, we’d have

f(H(u, t)) dx invariant

▶ But a Lebesgue measure dx cannot exist on CZ!



Part 3: Random initial data
Measures on function spaces, and a bit of Sobolev



Normal distribution

x

0

▶ Real normal distribution N (mean, variance)
▶ Complex: X + iY where X,Y ∼ N (0, variance/2) independent
▶ Linear combination of normal distributions still normal



Idea for our random functions

Fourier series with random coefficients

û0(k) ∼ N (0, 1/k?)

so that the initial function is
u0(x) =

∑
k∈Z

eikx

k?
gk,

where gk independent complex normal with variance 1.

Convergence
▶ Need ? such that the series converges (almost everywhere, almost surely)
▶ Also do something about k = 0



Simplified example

f(x) =

N∑
k=1

gk
k

sin(kx)
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Simplified example
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Simplified example

f(x) =

N∑
k=1

gk
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Simplified example

f(x) =

N∑
k=1

gk
k

sin(kx)

x
0

2π

N = 20



Convergence of series

Theorem (Khintchine inequality)
Let (bk) be a fixed sequence and (gk) complex Gaussian. Then

E

[∑
k∈Z

bkgk

]q
≲ qq/2 ∥(bk)∥qℓ2 , 1 ≤ q < ∞.

Our series
We have û0(k) ∼ N (0, 1/kα), and by choosing q = 2 in the above we get

E ∥u0∥22 = E

∥∥∥∥∥∑
k∈Z

eikx

kα
gk

∥∥∥∥∥
2

2

≲
∑
k∈Z

∣∣∣∣eikxkα

∣∣∣∣2 .
So u0 ∈ L2 almost surely if 2α > 1.



Fractional Sobolev spaces

Idea
Usual Sobolev norm defined on T by

∥u∥H1 =
[
∥u∥2L2 + ∥∂xu∥2L2

]1/2
.

But by Fourier transform

∥u∥2L2 + ∥∂xu∥2L2 =
∑
k∈Z

|û(k)|2 + |(ik)û(k)|2 =
∑
k∈Z

(1 + k2) |û(k)|2 .

Definition
Function u belongs to Hs if (1 + k2)s/2 û(k) defines an L2 function.



A bit more regularity

Random series in Hs

Put gk ∼ N (0, 1/k). Fractional Sobolev norm

E ∥u0∥2Hs = E

∥∥∥∥∥∑
k∈Z

(1 + k2)s/2
eikx

k
gk

∥∥∥∥∥
2

2

≲
∑
k∈Z

∣∣∣∣ eikxk1−s

∣∣∣∣2 .
So u0 ∈ Hs almost surely if 2− 2s > 1 =⇒ s < 1/2.

Intuition: u0 has “almost half a derivative”
▶ We just defined a Brownian bridge on T
▶ Remark: we’re still glossing over k = 0



Part 4: Invariant measure for NLS
Putting it all together



What we’ve seen so far

Problem: Find D such that{
i∂tu(x, t) + ∂xxu(x, t) = ± |u(x, t)|2 u(x, t),
u(x, t) ∼ D for all t ∈ R.

Conservation laws
▶ L2 norm and Hamiltonian conserved
▶ f(H( · )) dx invariant if finite dimension (Liouville)

Gaussian measures

u0(x) =
∑
k∈Z

eikx
gk
k

is a random function of regularity H1/2−ε



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure dµ(x) = exp(−βH(x)) dx.
For NLS the Hamiltonian is

H(u) = ∓1

p
∥u∥44 +

1

2
∥∂xu∥22 .

Warning: hand-waving!



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure dµ(x) = exp(−βH(x)) dx.
For NLS the Hamiltonian is

H(u) = ∓1

p
∥u∥44 +

1

2
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Warning: hand-waving!
Infinitely many Fourier coefficients

dµ(u) = exp

(
±β

p
∥u∥44

)
exp

(
−β
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)∏
k∈Z

dû(k).



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure dµ(x) = exp(−βH(x)) dx.
For NLS the Hamiltonian is

H(u) = ∓1

p
∥u∥44 +

1

2
∥∂xu∥22 .

Warning: hand-waving!
Move the first term to Fourier space:

dµ(u) = exp

(
±β

p
∥u∥44

)
exp

(
−β

2

∑
k∈Z

|(ik)û(k)|2
)∏

k∈Z
dû(k).



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure dµ(x) = exp(−βH(x)) dx.
For NLS the Hamiltonian is

H(u) = ∓1

p
∥u∥44 +

1

2
∥∂xu∥22 .

Warning: hand-waving!
A wild Gaussian measure appears!

dµ(u) = exp

(
±β

p
∥u∥44

)∏
k∈Z

exp

(
−β |û(k)|2

2(1/k)

)
dû(k).



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure dµ(x) = exp(−βH(x)) dx.
For NLS the Hamiltonian is

H(u) = ∓1

p
∥u∥44 +

1

2
∥∂xu∥22 .

Warning: hand-waving!
Let’s just ignore k = 0 (actually you choose Lebesgue on an interval):

dµ(u) = exp

(
±β

p
∥u∥44

)∏
k ̸=0

exp

(
−β |û(k)|2

2(1/k)

)
dû(k).



Some approximation required

Truncated measure
Define a measure on C2N by

dµN (u) = exp

(
±β

p
∥PNu∥44

) ∏
k ̸=0

|k|≤N

exp

(
−β |û(k)|2

2(1/k)

)
dû(k),

where PN projection to frequencies |k| ≤ N . Liouville =⇒ invariant!

Approximation
▶ Extend this to CZ\{0} with (unweighted) Gaussian part
▶ Uniformly bounded in N =⇒ convergence to µ

▶ Details technical (measure bound + bounds for norm growth in time)



Some approximation required

Truncated measure
Define a measure on C2N by

dµN (u) = exp

(
±β

p
∥PNu∥44

) ∏
k ̸=0

|k|≤N

exp

(
−β |û(k)|2

2(1/k)

)
dû(k),

where PN projection to frequencies |k| ≤ N . Liouville =⇒ invariant!

Invariance
Split u0 = PNu0 + P>Nu0 where PNu0 ∼ µN and P>Nu0 ∼ Gaussian,
both parts invariant under truncated equation

i∂tu(x, t) + ∂xxu(x, t) = ±PN

[
|PNu(x, t)|2 PNu(x, t)

]
.



Why would you do this? I

Improved regularity
Let u0 ∈ H1/2−ε. Then there is a H1/2−ε solution to NLS with this initial data
almost surely w.r.t. the measure.

Take a neighbourhood of u0, and you get solutions.

Growth bound
As a byproduct, for any δ > 0 there is set of probability 1− δ where

∥v( ·, t)∥H1/2−ε ≲ 1 +

√
log

(
1 + |t|

δ

)
.



Why would you do this? II

Theorem (Poincaré)
If µ(A) > 0, then there exist infinitely many t ∈ R such that µ (Φt(A) ∩A) > 0.

Fermi–Pasta–Ulam–Tsingou paradox: complicated systems are almost periodic!

x
0

2π



Further questions

{
i∂tu(x, t) + ∂xxu(x, t) = ± |u(x, t)|2 u(x, t),
u(x, 0) = u0(x), x ∈ T

What about…
▶ dimension greater than 1?
▶ nonlinearity with higher power?
▶ fixed potential, or stochastic forcing?
▶ infinite volume?
▶ other equations?



You made it to the end!
This talk was based on
Laarne: Periodic nonlinear Schrödinger equation (MSc thesis, 2021)
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