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Part 1: Finite dimensions
Basic definitions



State space: pendulum
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State space: pendulum with friction

Y horizontal speed




Invariant measure

speed

by
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No friction: invariant

speed

Friction: not invariant



Same formally

Definition
Let X C R? be the state space of the system, and ; a measure on it. A flow
Qy(x): X x R — X is p-invariant if

w(®:(A)) = p(A) for all measurable A C X and t € R.

We assume & to be bijective and continuous.



Recurrence theorem

Theorem (Poincaré)
Assume that j1(X) < oo. If u(A) > 0, then there exist infinitely many t € R such that

11 (Dy(A) N A) > 0.

That is, the flow returns to any region of initial data.

Proof.

If there wasn't, then we'd have

o (U ¢t(A)> = u(®(A)) = oo,

teN teN

a contradiction. Repeat with ®;(A) as initial data. O



How to find invariant measures

Theorem (Liouville)
Let ® be a Hamiltonian flow on R%. Then ® is invariant w.r.t. Lebesgue dz on R?.

Hamiltonian H
H corresponds to the "total energy” of the system and is conserved by ®. Then
w(z) = f(H(z))dz is invariant:

p(@i(a) = [

Di(A)

f(H(x))dz = /Af(H((I)t(x)))dx = /Af(H(ﬂf))dﬂf = 1(A).



Part 2: Nonlinear Schrodinger equation
A wave-like PDE, and some Fourier analysis



The protagonist

Nonlinear Schrédinger equation

{i@tu(:c,t) + Oppu(z, t) = =+ |u(z, ) u(z, 1),
u(z,0) = uo(z),

where ug is a complex function on T = [0, 27].
» Complex-valued
» Describes waves in e.g. Bose—Einstein condensate

» Dispersive: speed of sound depends on frequency

P> + causes or prevents blow-up



Solving linear Schrodinger

i0u(z,t) + Oggu(z,t) = 0.
Take Fourier transform in space and time:
i(i0)a(k,9) + (ik)%a(k,9) = 0.

Combine common factors:
(W + kY a(k,9) = 0.

This implies supp @ C {(k, —k*)}. So @ depends on k only = same as 1ip.
Inverse transform:

u(x,t) = Z eik””—ik%u})(l{) =: e"*Buy(x).
keZ



Solving nonlinear Schroédinger

iOpu(z,t) 4+ Oppu(z, t) = + |u(x, t)|* u(z, t),
u(z,0) = up(z).

Linear case solved by e™2uy.

Nonlinear case by Duhamel principle:

t
u(z,t) = ePug + / 98 lu(z, t) | u(x, t) ds.
0

> Fixed-point iteration converges in suitable space, here L*(T x [0, 7])
» Only valid up to time 7 (small)

» Details are awful (major opening in analytic number theory)



Global solution

Theorem (Local solution)

Given ug € L?(T), unique solution u(xz,t) up to time T ~ Hu0||2_c.

Theorem (Conservation of mass)
If u solves NLS, then ||u(-,t)|, = |luoll, for all t € R.

Corollary
Given ug € L?(T), there is unique u(x,t) for all t € R.



Conservation laws, |

Theorem (Conservation of mass)
If u solves NLS, then ||u(-,t)|ly = ||uoll, for all t € R.

Proof.

ol 01 = [ o (o, ). )| da,

use product rule and solve 0;u from NLS. Everything cancels out.



Conservation laws, I

Theorem (Conservation of energy)
If u solves NLS, then its Hamiltonian satisfies H (u(-,t)) = H(u(-,0)) for all t € R.

Invariant measure for NLS
» Initial data ug ~ D, where D some random distribution (how?)
» Want u; ~ D forallt € R
» Two conservation laws at our disposal
>

If Liouville did hold in infinite dimensions, we'd have
f(H(u,t))dz invariant

» But a Lebesgue measure dz cannot exist on CZ!



Part 3: Random initial data
Measures on function spaces, and a bit of Sobolev



Normal distribution

0
\

» Real normal distribution A (mean, variance)
» Complex: X +4Y where X, Y ~ AN(0,variance/2) independent

» Linear combination of normal distributions still normal



Idea for our random functions

Fourier series with random coefficients

o (k) ~ N'(0,1/k")
so that the initial function is "
eZ X
up(z) = Z ng,

keZ
where g; independent complex normal with variance 1.
Convergence

» Need 7 such that the series converges (almost everywhere, almost surely)
> Also do something about k =0



Simplified example




Simplified example




Simplified example




Simplified example
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Convergence of series

Theorem (Khintchine inequality)
Let (by) be a fixed sequence and (gy) complex Gaussian. Then

q
E [Z bkgk] SaP ), 1< g< oo
kez

Our series
We have (k) ~ N(0,1/k%), and by choosing ¢ = 2 in the above we get

Zkagk <Z

k€EZ keZ

2kz
a

E =E
lwoll3 = -

So ug € L? almost surely if 2o > 1.



Fractional Sobolev spaces

Idea
Usual Sobolev norm defined on T by

1/2
2
lullggs = [llullZa + I0zullfz] -

But by Fourier transform

lullZe + 10sullze = Y la(k)|* + |ik)ak)|* = Y1+ k) Jak)]”.

kEZ keZ

Definition
Function u belongs to H® if (1 + k2)%/2 au(k) defines an L? function.



A bit more regularity

Random series in H*
Put gr ~ N(0,1/k). Fractional Sobolev norm

2

<2

2 kEZ

1kx
31+ k)2,
keZ k

2
Eluollpys =E

So up € H® almost surely if 2 —2s > 1 = s < 1/2.
Intuition: ug has “almost half a derivative”

» We just defined a Brownian bridge on T

» Remark: we're still glossing over k = 0




Part 4: Invariant measure for NLS
Putting it all together



What we've seen so far

Problem: Find D such that
iOpu(x, t) + Ogpu(z, t) = % |u(z, t) > u(z, t),
u(z,t) ~D forall t € R.

Conservation laws
» L2 norm and Hamiltonian conserved
» f(H(-))dz invariant if finite dimension (Liouville)

Gaussian measures

uo(x) = Zeim% is a random function of regularity H'/>~¢
keZ



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure du(x) = exp(—SH (x)) dx.
For NLS the Hamiltonian is

Ly a1 2
H(w) =% llully + 5 10zul;

Warning: hand-waving!



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure du(z) = exp(—fH (z)) dz.
For NLS the Hamiltonian is

1 4 1 2

Warning: hand-waving!
Infinitely many Fourier coefficients

() = exp (£ ull}) exp (=2 10su13) T e

keZ



Why Gaussian measure?

Physics, no details

Finite-dimensional Hamiltonian system has Gibbs measure du(z) = exp(—fH (z)) dz

For NLS the Hamiltonian is

1 4 1 2
H(w) =% lluly + 5 10zul;

Warning: hand-waving!
Move the first term to Fourier space:

dutw) = exp (£2 ul}) exp (—D ik)a >\2)Hda<k>

keZ kEZ



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure du(z) = exp(—SH(x)) dx.
For NLS the Hamiltonian is

Lo, 1 2
H(u) = jF]; [Jully + 5 | Oz ull5 -

Warning: hand-waving!
A wild Gaussian measure appears!

dp(u) = exp <:I:i HuHi) H exp

kEZ

Bla(®)*\ .
<_2(1/k)> du(k).



Why Gaussian measure?

Physics, no details
Finite-dimensional Hamiltonian system has Gibbs measure du(z) = exp(—pH (z)) dz.
For NLS the Hamiltonian is

1 4 1 2
H(w) =% llully + 5 10zul;

Warning: hand-waving!
Let's just ignore & = 0 (actually you choose Lebesgue on an interval):

~ 2
dutw) =exp (£2 Jul}) [T exv (—i’ﬁ%) aa(k).

k0



Some approximation required

Truncated measure
Define a measure on C?V by

dpsn(w) = exp (iﬁ rmui) 11 exp< o )da<k>,

k0
k|<N

where Py projection to frequencies |k| < N. Liouville = invariant!

Approximation

> Extend this to CZ\{%} with (unweighted) Gaussian part
» Uniformly bounded in N = convergence to u

» Details technical (measure bound + bounds for norm growth in time)



Some approximation required

Truncated measure
Define a measure on C?V by

T2
dpn(u) = exp <:t£ |PNUH3) H exp <—62’(7§(/kk))’> da(k),
kA0
|k|<N

where Py projection to frequencies |k| < N. Liouville = invariant!

Invariance

Split ug = Pyug + P> nug where Pyug ~ py and Psyug ~ Gaussian,
both parts invariant under truncated equation

iOpu(x,t) 4+ Oppu(x, t) = £ Py | |Pyu(z, t)]* Pyu(z,t)].



Why would you do this? |

Improved regularity
Let ug € H'/2=¢_ Then there is a H'/?7¢ solution to NLS with this initial data
almost surely w.r.t. the measure.

Take a neighbourhood of ug, and you get solutions.

Growth bound
As a byproduct, for any é > 0 there is set of probability 1 — § where

1+t
lo(- )| gase—e ST+ 10g< 5H>'




Why would you do this? Il

Theorem (Poincaré)
If u(A) > 0, then there exist infinitely many t € R such that p (®4(A) N A) > 0.

Fermi—Pasta—Ulam—Tsingou paradox: complicated systems are almost periodic!




Further questions

{i@tu(:n,t) + Oppu(m, t) = =+ |u(z, 1)} u(z, t),
u(z,0) =up(z), €T

What about...
» dimension greater than 17
» nonlinearity with higher power?
> fixed potential, or stochastic forcing?
» infinite volume?

> other equations?



You made it to the end!
This talk was based on
Laarne: Periodic nonlinear Schrédinger equation (MSc thesis, 2021)
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