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Motivation

Let (Ω,F ,P) be a probability space.

The stochastic pressure equation: U ⊂ Rn a bounded, smooth domain, consider

−∇x · (p(x ;ω) ⋄ ∇xu(x ;ω)) = 0, x ∈ U, ω ∈ Ω,

with some (non-random) boundary data. Here ⋄ is the so-called Wick product; acts as a
stochastic renormalization of sorts

Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous
medium. The plot of the solution looks like a percolation diagram

Modelling suggests to take p(x ;ω) = e⋄X (x ;ω), the Wick exponential of a random �eld X
as the permeability; in this case measurement data suggests to take X as the
log-correlated Gaussian �eld.
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Quick recap of probability theory

Let (Ω,F ,P) be a probability space.

A random vector X is a measurable mapping (Ω,F) → (Rn,B(Rn)). When n = 1,X is
called a random variable.

We de�ne the characteristic function of X (the Fourier transform of QX = P ◦ X−1)

f̂ (t) =

∫
Ω
e it·X (ω) dQX (ω), t ∈ Rn,

where the probability measure QX : B(Rn) → [0, 1] is called the distribution of X .

Let T be a set and (E , E) a measurable space. A random �eld indexed by T is a
collection (Xt : t ∈ T ) of random vectors Xt : (Ω,F ,P) → (E , E).
Typically we take T = Rn. When n = 1, X is referred to as a stochastic process rather
than a �eld.

Fix ω ∈ Ω. The map t 7→ Xt(ω), t ∈ T is called the (sample) path of the random �eld.
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Gaussian random variables

Why Gaussians?

Normal distribution shows up often in applications, even when not assuming a priori
Gaussianity, due to Central Limit Theorem -type results

In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are
stable under linear transformation and limits

Many of the Gaussian techniques can be adapted with some modi�cation for more di�cult
distributions

One can obtain many other distributions from transformations of Gaussians
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Gaussian random variables: the �nite-dimensional case

De�nition

A Gaussian random variable X is a real-valued random variable with characteristic function
f̂ (t) = e iµt−

1
2
σ2t2 for some µ ∈ R, σ2 > 0. The parameter µ is called the mean, σ2 is called

the variance of X .

X is said to be centred if µ = 0; X is standard Gaussian if µ = 0, σ2 = 1.

A random vector X = (X1, ...,Xn) with values in Rn is said to be Gaussian if X · t ∈ R is a
Gaussian random variable for all t ∈ Rn.
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Gaussians: the in�nite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (·, ·)H .

A random variable X with values in H is said to be Gaussian if the real-valued random
variable (h,X )H is Gaussian for every h ∈ H.
Characterisation of Gaussians: if X is a centred random variable with values in H, the
following can be shown to be equivalent:

1 X is Gaussian;
2 There exists a positive, symmetric and continuous linear operator Q : H → H such that the

Fourier transform of X is given by

E[exp(i(X , h)H)] = exp

(
−1

2
(Qh, h)H

)
, ∀h ∈ H.

Moreover, the operator Q, called the covariance operator, is uniquely determined by (2).

Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There
exists a constant β > 0 such that E[exp(β∥X∥2H)] < +∞.

Independent Gaussians form a linear space.

Fact: L2(Ω)-limit of Gaussians is Gaussian; moreover, for Gaussian random variables many
forms of convergence are actually equivalent.
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Examples of Gaussian processes (I)

Karhunen-Loève expansion. Let H be a separable Hilbert space. Let (ej) ⊂ H be an
orthonormal basis, (ξj) a sequence of real-valued independent, standard Gaussian random
variables and (σj) ⊂ R+ satisfying

∑∞
j=1 σ

2
j < +∞. Then any Gaussian X ∈ H can be

written as X =
∑∞

j=1 σjξjej , where the sum converges almost surely with respect to ∥ · ∥H .
Brownian motion. Let (ξi ) be independent standard Gaussian random variables. For each

n, de�ne a random step process Wn(t) :=
1√
n

∑⌊nt⌋
k=1 ξk , t ∈ [0, 1]. On the limit as n → ∞

we obtain a process called the Brownian motion.

Brownian motion (Wt) satis�es E[Wt ] = 0,Var(Wt) = t,Cov(Wt ,Ws) = t ∧ s, for all
s, t ∈ [0, 1].
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Examples of Gaussian processes (II)

Fractional Brownian motion (FBm). A continuous time Gaussian process BH on [0, 1]
which satis�es E[BH(0)] = 0, E[BH(t)] = 0,∀t ∈ [0, 1], and

Cov(BH(t),BH(s)) =
1

2

(
|t|2H + |s|2H − |t − s|2H

)
∀t ∈ [0, 1],

where H ∈ (0, 1) is called the Hurst index (for H = 1/2 one obtains the Brownian motion).

Regularity of FBm: sample paths of BH (i.e. functions t 7→ BH(t, ω)) are nowhere
di�erentiable. However, the sample path of BH is Hölder with index H − ε, for every ε > 0.

One may also consider several dimensional variants of BM and FBm taking their values in
Rn, for instance by requiring that each of the projections BH

i , i = 1, ..., n, are
one-dimensional Fractional Brownian motions.
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Plots of FBm sample paths with varying Hurst index

Figure: Simulations of sample paths of a single realisation of FBm ("with �xed ω ∈ Ω") with Hurst
parameter H = 0.15,H = 0.55,H = 0.95
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Gaussian Hilbert space. Construction of white noise (I)

Recall the Schwartz space S(Rn), the space of (smooth) functions on Rn whose
derivatives are rapidly decreasing, and its dual S ′(Rn), the space of tempered distributions.

We say that a complex-valued function Φ on S(Rn) is the characteristic function of a
probability measure ν on S ′(Rn) if Φ(ϕ) =

∫
S′(Rn) e

i(x ,ϕ) dν(x), ∀ϕ ∈ S(Rn).

Bochner-Minlos Theorem for Ω = S ′(Rn): A complex-valued function Φ on S(Rn) is the
characteristic function of a (unique) probability measure ν on S ′(Rn) i� Φ(0) = 1, Φ is

continuous, and Φ is positive de�nite.

De�ne Φ0(ϕ) := exp
(
−1

2
∥ϕ∥2L2(Rn)

)
for all ϕ ∈ S(Rn). By Bochner-Minlos theorem,

there exists a unique probability measure µ on S ′ having Φ0 as its characteristic function;
we call µ the white noise measure.

Since we have
∫
S′(Rn) e

i(W ,ϕ) dµ(W ) = exp
(
−1

2
∥ϕ∥2L2(Rn)

)
, and characteristic functions

determine distributions, the random variable (W , ϕ) is a centred Gaussian with variance
equal to ∥ϕ∥2L2(Rn), for any ϕ ∈ S(Rn).
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Gaussian Hilbert space. Construction of white noise (II)

De�nition

A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Ω,F ,P), equipped with the L2(Ω,F ,P) inner product and closed with respect to the
corresponding norm.

To de�ne a Gaussian Hilbert space {(W , f ) : f ∈ L2(Rn)}, consider the map from S(Rn)
to L2(Ω) given by ϕ 7→ (W , ϕ). Since E[(W , ϕ)2] = ∥ϕ∥2L2(Rn), this map is an isometry.

As S(Rn) is dense in L2(Rn), and L2(Ω) is complete, we extend this operator to a one
from L2(Rn) to L2(Ω) by de�ning (W , f ) := limn→∞(W , ϕn), where ϕn ∈ S(Rn) and
ϕn → f in L2(Rn).

By dominated convergence E[e i(W ,ϕn)] → E[e i(W ,f )]; Hence the random variable (W , f ) is
centred Gaussian with variance equal to ∥f ∥2L2(Rn).

We call {(W , f ) : f ∈ L2(Rn)} a white noise Gaussian Hilbert space.
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Gaussian Hilbert space. Construction of white noise (III)

For f , g ∈ L2(Rn), we may apply this to (W , f + g) to see that
Cov[(W , f ), (W , g)] = (f , g)L2(Rn); i.e. if f , g are orthogonal in L2(Rn), the (Gaussian)
random variables (W , f ), (W , g) are independent.

We formally rewrite the above as Cov[(W , f ), (W , g)] =
∫
Rn

∫
Rn δ(x − y)f (x)g(y) dx dy ,

and say that W has the covariance kernel δ(x − y), where δ denotes the Dirac measure.

One may also de�ne stochastic processes on the white noise space. Example: let n = 1,
setting Bt(W ) := (W ,1(0,t)), where t 7→ 1(a,b)(t) ∈ L2(R) is the indicator function of
(a, b), can be shown to yield a Brownian motion process.

Construction of other fractional Gaussian Hilbert spaces: �nd a suitable characteristic
functional, some Hilbert space and a dense subspace (here we used L2 and S); use
Bochner-Minlos thm; extend isometrically.
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Log-correlated Gaussian �eld (LGF)

De�nition

The LGF is a centred real-valued Gaussian random tempered distribution h on Rn, de�ned
modulo a global additive constant, whose distribution is determined by the covariance

Cov((h, ϕ1), (h, ϕ2)) =

∫
Rn×Rn

(
log

1

|y − z |
+ g(y , z)

)
ϕ1(y)ϕ2(z) dy dz , ϕ1, ϕ2 ∈ S0(Rn),

where S0(Rn) :=
{
f ∈ S(Rn) :

∫
Rn f (x) dx = 0

}
and g is a bounded function on Rn × Rn.

Here centred means that E[(h, ϕ)] = 0 for all ϕ ∈ S0(Rn). A covariance kernel such as above is
said to be of log-type.

Equivalently one may de�ne the LGF as h = (−∆)−n/4W , where W is the white noise.

When n = 1, the LGF can be shown to be morally the weak limit in S ′(R) of FBm BH as
H → 0. Recall: the paths of BH belong to CH−ε(R) for all ε > 0; hence the LGF belongs
to C−ε(R) for every ε > 0.
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Gaussian multiplicative chaos measure (GMC)

Roughly speaking, GMC is a theory which de�nes rigorously random measures

Mγ(dy) = eγX (y)σ(dy),

where σ is a Radon measure on some metric space (D, d), γ > 0 is a parameter, and
X : D → R is a centred Gaussian �eld.

Typically one constructs such measures from random �elds X that are not de�ned as
functions, so pointwise evaluations X (y) do not make sense (LGF is an important example)

The idea to construct a GMC measure is rather simple: de�ne the measure as the limit as
ε → 0 of Cεe

γXεσ(dx) where Xε is a sequence converging to X , and Cε is some
normalisation sequence which ensures that the limit is non-trivial (i.e. we do not end up
with the zero measure)
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GMC measure. Construction.

Let θ be a smooth molli�er. Set Xε := X ∗ θε, where X has a covariance kernel of
log-type, and θε :=

1
εn θ

( ·
ε

)
. It can be shown that the random measures

Mε,γ(dy) = eγXε(y)− γ2E[Xε(y)2]
2 σ(dy)

converge in probability in the space of Radon measures towards a random measure Mγ .

The random measure Mγ does not depend on the molli�er θ

If σ(dy) = f (y) dy , with f > 0, the measure Mγ is di�erent from 0 i� γ <
√
2n.

The proof of this convergence is divided into two cases: γ ∈ (0,
√
n), the so-called

L2-range, which is easier, and then γ ∈ [
√
n,
√
2n), which uses more re�ned techniques.

One could consider other, more general approximations of the �eld X rather than of the
form X ∗ θε as well for the conclusion to hold
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L2-range, which is easier, and then γ ∈ [
√
n,
√
2n), which uses more re�ned techniques.

One could consider other, more general approximations of the �eld X rather than of the
form X ∗ θε as well for the conclusion to hold
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GMC measure. Properties.

For γ <
√
2n, assume σ(dx) = f (x) dx , with f bounded.

Moments of GMC measure associated to LGF: For any ball B ⊂ D we have
E[Mγ(B)

q] < +∞ i� q ∈ (−∞, 2n
γ2
). Compare this with moments of Gaussians (i.e.

Fernique thm)!

Multifractal behavior of Mγ : Assume that f is continuous. Then for all x and all
q ∈ (−∞, 2n

γ2
) there exists some positive constant Cx = Cx(f , q,K ) such that

E[Mγ(B(x , r))
q]

r→0∼ Cx r
ξ(q),

where ξ(q) = (n + γ2

2
)q − γ2q2

2
is called the structure function of Mγ . Roughly speaking,

the GMC measure is Hölder around each point.
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Thank you!
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