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Outline of the talk

@ Introduction

© Random fields
@ Some basics on random processes and fields
@ Gaussians: on finite- and infinite-dimensional spaces
@ Examples of Gaussian processes

© Fractional fields
e Construction of the white noise L? space

@ Gaussian multiplicative chaos measure
@ Definition and a sketch of how to construct GMC
@ Basic properties of GMC
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Motivation

Let (Q, F,P) be a probability space.
@ The stochastic pressure equation: U C R" a bounded, smooth domain, consider

—Vix - (p(x;w) o Vyu(x;w)) =0, xelU weQ,

with some (non-random) boundary data. Here ¢ is the so-called Wick product; acts as a
stochastic renormalization of sorts
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Motivation

Let (Q, F,P) be a probability space.

@ The stochastic pressure equation: U C R" a bounded, smooth domain, consider
—Vix - (p(x;w) o Vyu(x;w)) =0, xelU weQ,

with some (non-random) boundary data. Here ¢ is the so-called Wick product; acts as a
stochastic renormalization of sorts

@ Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous
medium. The plot of the solution looks like a percolation diagram
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Motivation

Let (Q, F,P) be a probability space.

@ The stochastic pressure equation: U C R" a bounded, smooth domain, consider
—Vix - (p(x;w) o Vyu(x;w)) =0, xelU weQ,
with some (non-random) boundary data. Here ¢ is the so-called Wick product; acts as a

stochastic renormalization of sorts

@ Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous
medium. The plot of the solution looks like a percolation diagram

o Modelling suggests to take p(x;w) = e®X(%) the Wick exponential of a random field X
as the permeability; in this case measurement data suggests to take X as the
log-correlated Gaussian field.
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Quick recap of probability theory

Let (Q, F,P) be a probability space.

Patrik Nummi (UH) Fractional Gaussian fields and the GMC



Quick recap of probability theory

Let (Q, F,P) be a probability space.
o A random vector X is a measurable mapping (2, F) — (R", B(R")). When n=1,Xis
called a random variable.
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Quick recap of probability theory

Let (Q, F,P) be a probability space.
o A random vector X is a measurable mapping (2, F) — (R", B(R")). When n=1,Xis
called a random variable.

o We define the characteristic function of X (the Fourier transform of Qx =P o X 1)
f(t) = / "X dQx(w),  teR”,
Q

where the probability measure Qx: B(R") — [0,1] is called the distribution of X.
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Quick recap of probability theory

Let (Q, F,P) be a probability space.
o A random vector X is a measurable mapping (2, F) — (R", B(R")). When n=1,Xis
called a random variable.

o We define the characteristic function of X (the Fourier transform of Qx =P o X 1)
f(t) = / "X dQx(w),  teR",
Q
where the probability measure Qx: B(R") — [0,1] is called the distribution of X.

o Let T be a set and (E,E) a measurable space. A random field indexed by T is a
collection (X; : t € T) of random vectors X;: (2, F,P) — (E,E).
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Let (Q, F,P) be a probability space.
o A random vector X is a measurable mapping (2, F) — (R", B(R")). When n=1,Xis
called a random variable.
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where the probability measure Qx: B(R") — [0,1] is called the distribution of X.
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Quick recap of probability theory

Let (Q, F,P) be a probability space.

o A random vector X is a measurable mapping (2, F) — (R", B(R")). When n=1,Xis
called a random variable.

o We define the characteristic function of X (the Fourier transform of Qx =P o X 1)
f(t) = / "X dQx(w),  teR”,
Q

where the probability measure Qx: B(R") — [0,1] is called the distribution of X.

o Let T be a set and (E,E) a measurable space. A random field indexed by T is a
collection (X; : t € T) of random vectors X;: (2, F,P) — (E,E).

o Typically we take T =R". When n =1, X is referred to as a stochastic process rather
than a field.

o Fix w e Q. The map t — Xi(w),t € T is called the (sample) path of the random field.
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Gaussian random variables

Why Gaussians?
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Gaussian random variables

Why Gaussians?

@ Normal distribution shows up often in applications, even when not assuming a priori
Gaussianity, due to Central Limit Theorem -type results
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Gaussian random variables

Why Gaussians?
@ Normal distribution shows up often in applications, even when not assuming a priori
Gaussianity, due to Central Limit Theorem -type results
@ In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are
stable under linear transformation and limits
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Gaussian random variables

Why Gaussians?

@ Normal distribution shows up often in applications, even when not assuming a priori
Gaussianity, due to Central Limit Theorem -type results

@ In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are
stable under linear transformation and limits

@ Many of the Gaussian techniques can be adapted with some modification for more difficult
distributions
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Gaussian random variables

Why Gaussians?

@ Normal distribution shows up often in applications, even when not assuming a priori
Gaussianity, due to Central Limit Theorem -type results

@ In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are
stable under linear transformation and limits

@ Many of the Gaussian techniques can be adapted with some modification for more difficult
distributions

@ One can obtain many other distributions from transformations of Gaussians
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Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function
f(t) = e27" for some i € R, 0% > 0. The parameter 4 is called the mean, o2 is called
the variance of X.
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Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function
f(t) = e27" for some i € R, 0% > 0. The parameter 4 is called the mean, o2 is called
the variance of X.

e X is said to be centred if = 0; X is standard Gaussian if = 0,0° = 1.
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Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function
f(t) = e27" for some i € R, 0% > 0. The parameter 4 is called the mean, o2 is called
the variance of X.

e X is said to be centred if = 0; X is standard Gaussian if = 0,0° = 1.

@ A random vector X = (Xi, ..., X,) with values in R" is said to be Gaussianif X -t € Ris a
Gaussian random variable for all t € R".
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Gaussians: the infinite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (-, -)y.
@ A random variable X with values in H is said to be Gaussian if the real-valued random
variable (h, X)y is Gaussian for every h € H.
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Gaussians: the infinite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (-, -)y.
@ A random variable X with values in H is said to be Gaussian if the real-valued random
variable (h, X)y is Gaussian for every h € H.
o Characterisation of Gaussians: if X is a centred random variable with values in H, the
following can be shown to be equivalent:
@ X is Gaussian;
© There exists a positive, symmetric and continuous linear operator Q: H — H such that the
Fourier transform of X is given by

Efexp(i(X, h)u)] = exp (i(oh, h)H) . VheH.

Moreover, the operator Q, called the covariance operator, is uniquely determined by (2).
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Gaussians: the infinite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (-, -)y.
@ A random variable X with values in H is said to be Gaussian if the real-valued random

variable (h, X)y is Gaussian for every h € H.
o Characterisation of Gaussians: if X is a centred random variable with values in H, the
following can be shown to be equivalent:
@ X is Gaussian;

© There exists a positive, symmetric and continuous linear operator Q: H — H such that the
Fourier transform of X is given by

Efexp(i(X, h)u)] = exp (i(oh, h)H) . VheH.

Moreover, the operator Q, called the covariance operator, is uniquely determined by (2).
@ Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There
exists a constant 3 > 0 such that E[exp(8]|X||?,)] < +oc.
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Gaussians: the infinite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (-, -)y.
@ A random variable X with values in H is said to be Gaussian if the real-valued random
variable (h, X)y is Gaussian for every h € H.
o Characterisation of Gaussians: if X is a centred random variable with values in H, the
following can be shown to be equivalent:
@ X is Gaussian;

© There exists a positive, symmetric and continuous linear operator Q: H — H such that the
Fourier transform of X is given by

Efexp(i(X, h)u)] = exp (i(ah, h)H) . VheH.

Moreover, the operator Q, called the covariance operator, is uniquely determined by (2).
@ Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There
exists a constant 3 > 0 such that E[exp(8]|X||?,)] < +oc.
@ Independent Gaussians form a linear space.
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Gaussians: the infinite-dimensional (Hilbert) case
Let H be a real Hilbert space with scalar product (-, -)y.
@ A random variable X with values in H is said to be Gaussian if the real-valued random
variable (h, X)y is Gaussian for every h € H.
o Characterisation of Gaussians: if X is a centred random variable with values in H, the
following can be shown to be equivalent:
@ X is Gaussian;

© There exists a positive, symmetric and continuous linear operator Q: H — H such that the
Fourier transform of X is given by

Efexp(i(X, h)u)] = exp (i(ah, h)H) . VheH.

Moreover, the operator Q, called the covariance operator, is uniquely determined by (2).
@ Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There
exists a constant 3 > 0 such that E[exp(8]|X||?,)] < +oc.
@ Independent Gaussians form a linear space.
e Fact: L?(Q)-limit of Gaussians is Gaussian; moreover, for Gaussian random variables many
forms of convergence are actually equivalent.
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Examples of Gaussian processes (1)

e Karhunen-Loéve expansion. Let H be a separable Hilbert space. Let (e;) C H be an
orthonormal basis, (&;) a sequence of real-valued independent, standard Gaussian random

variables and (0;) C Ry satisfying Zf; af < +00. Then any Gaussian X € H can be
written as X = 7%, 0;{;ej, where the sum converges almost surely with respect to || - || .
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Examples of Gaussian processes (1)

e Karhunen-Loéve expansion. Let H be a separable Hilbert space. Let (e;) C H be an
orthonormal basis, (§;) a sequence of real-valued independent, standard Gaussian random
variables and (0;) C Ry satisfying Zf; af < +o00. Then any Gaussian X € H can be
written as X = 7%, 0;{;ej, where the sum converges almost surely with respect to || - || .

e Brownian motion. Let (&;) be independent standard Gaussian random variables. For each

n, define a random step process W,(t) := % ,L(n:t{ &k, t € [0,1]. On the limit as n — oo

we obtain a process called the Brownian motion.
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Examples of Gaussian processes (1)

e Karhunen-Loéve expansion. Let H be a separable Hilbert space. Let (e;) C H be an
orthonormal basis, (§;) a sequence of real-valued independent, standard Gaussian random
variables and (o;) C R satisfying 352, af < 400. Then any Gaussian X € H can be
written as X = 7%, 0;{;ej, where the sum converges almost surely with respect to || - || .

e Brownian motion. Let (&;) be independent standard Gaussian random variables. For each

n, define a random step process W,(t) := % ,L(n:t{ &k, t € [0,1]. On the limit as n — oo

we obtain a process called the Brownian motion.
@ Brownian motion (W;) satisfies E[W;] = 0, Var(W;) = t, Cov(W;, Ws) = t A s, for all
s, t €[0,1].
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Examples of Gaussian processes (II)

o Fractional Brownian motion (FBm). A continuous time Gaussian process B on [0, 1]
which satisfies E[B"(0)] = 0, E[B"(t)] = 0,Vt € [0,1], and

Cou(BH (1), B(5)) = 5 (ItPH + s — |t — s?)  weefo.1]

where H € (0,1) is called the Hurst index (for H = 1/2 one obtains the Brownian motion).
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Examples of Gaussian processes (II)

o Fractional Brownian motion (FBm). A continuous time Gaussian process B on [0, 1]
which satisfies E[B"(0)] = 0, E[B"(t)] = 0,Vt € [0,1], and

1
Cov(B™(2), BM(s)) = 5 (It + s — e — s)2)  ve e [0,1],
where H € (0,1) is called the Hurst index (for H = 1/2 one obtains the Brownian motion).

o Regularity of FBm: sample paths of B (i.e. functions t — B"(t,w)) are nowhere
differentiable. However, the sample path of B/ is Holder with index H — ¢, for every £ > 0.
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Examples of Gaussian processes (II)

o Fractional Brownian motion (FBm). A continuous time Gaussian process B on [0, 1]
which satisfies E[B"(0)] = 0, E[B"(t)] = 0,Vt € [0,1], and

Cou(BH (1), B(5)) = 5 (ItPH + s — |t — s?)  weefo.1]

where H € (0,1) is called the Hurst index (for H = 1/2 one obtains the Brownian motion).

o Regularity of FBm: sample paths of B (i.e. functions t — B"(t,w)) are nowhere
differentiable. However, the sample path of B/ is Holder with index H — ¢, for every £ > 0.

@ One may also consider several dimensional variants of BM and FBm taking their values in
R", for instance by requiring that each of the projections B;"’,i =1,...,n, are
one-dimensional Fractional Brownian motions.
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Plots of FBm sample paths with varying Hurst index
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Figure: Simulations of sample paths of a single realisation of FBm ("with fixed w € Q") with Hurst
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Gaussian Hilbert space. Construction of white noise (1)

o Recall the Schwartz space S(R"), the space of (smooth) functions on R” whose
derivatives are rapidly decreasing, and its dual S’(R"), the space of tempered distributions.
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Gaussian Hilbert space. Construction of white noise (1)

o Recall the Schwartz space S(R"), the space of (smooth) functions on R” whose
derivatives are rapidly decreasing, and its dual S’(R"), the space of tempered distributions.

o We say that a complex-valued function ® on S(R") is the characteristic function of a
probability measure v on S'(R") if ®(¢) = [ (gn e9) du(x), V¢ € S(R").
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Gaussian Hilbert space. Construction of white noise (1)

o Recall the Schwartz space S(R"), the space of (smooth) functions on R” whose
derivatives are rapidly decreasing, and its dual S’(R"), the space of tempered distributions.

o We say that a complex-valued function ® on S(R") is the characteristic function of a
probability measure v on S'(R") if ®(¢) = [ (gn e9) du(x), V¢ € S(R").

@ Bochner-Minlos Theorem for Q = S'(R"): A complex-valued function ® on S(R") is the
characteristic function of a (unique) probability measure v on S'(R") iff ®(0) =1, ® is
continuous, and O is positive definite.

Patrik Nummi (UH) Fractional Gaussian fields and the GMC March 11, 2022 11/19



Gaussian Hilbert space. Construction of white noise (1)

o Recall the Schwartz space S(R"), the space of (smooth) functions on R” whose
derivatives are rapidly decreasing, and its dual S’(R"), the space of tempered distributions.

o We say that a complex-valued function ® on S(R") is the characteristic function of a
probability measure v on S'(R") if ®(¢) = [ (gn e9) du(x), V¢ € S(R").

@ Bochner-Minlos Theorem for Q = S'(R"): A complex-valued function ® on S(R") is the
characteristic function of a (unique) probability measure v on S'(R") iff ®(0) =1, ® is
continuous, and O is positive definite.

o Define ®g(¢) := exp < 2H¢HL2(R~ ) for all ¢ € S(R"). By Bochner-Minlos theorem,

there exists a unique probability measure 11 on 8’ having ®q as its characteristic function;
we call u the white noise measure.
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Gaussian Hilbert space. Construction of white noise (1)

o Recall the Schwartz space S(R"), the space of (smooth) functions on R” whose
derivatives are rapidly decreasing, and its dual S’(R"), the space of tempered distributions.

o We say that a complex-valued function ® on S(R") is the characteristic function of a
probability measure v on S'(R") if ®(¢) = [ (gn e9) du(x), V¢ € S(R").

@ Bochner-Minlos Theorem for Q = S'(R"): A complex-valued function ® on S(R") is the
characteristic function of a (unique) probability measure v on S'(R") iff ®(0) =1, ® is
continuous, and O is positive definite.

o Define ®g(¢) := exp < 2H¢HL2(R~ ) for all ¢ € S(R"). By Bochner-Minlos theorem,
there exists a unique probability measure 11 on 8’ having ®q as its characteristic function;
we call u the white noise measure.

@ Since we have fS’(R") e'(W:9) dp(W) = exp ( 2H¢HL2 Rn ) and characteristic functions

determine distributions, the random variable (W, ¢) is a centred Gaussian with variance
equal to ||<Z>H%2(R,,), for any ¢ € S(R").
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Gaussian Hilbert space. Construction of white noise (1)

Definition
A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Q, F,P), equipped with the L?(Q, F,P) inner product and closed with respect to the

corresponding norm.
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Gaussian Hilbert space. Construction of white noise (1)

Definition
A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Q, F,P), equipped with the L?(Q, F,P) inner product and closed with respect to the

corresponding norm.

o To define a Gaussian Hilbert space {(W, f) : f € L2(R")}, consider the map from S(R")
to L2(Q) given by ¢ — (W, ¢). Since E[(W, ¢)?] = ||<;§HL2(R,1 this map is an isometry.
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Gaussian Hilbert space. Construction of white noise (1)

Definition
A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Q, F,P), equipped with the L?(Q, F,P) inner product and closed with respect to the

corresponding norm.

o To define a Gaussian Hilbert space {(W, f) : f € L2(R")}, consider the map from S(R")
to L2(Q) given by ¢ — (W, ¢). Since E[(W, ¢)?] = ||<;§HL2(R,1 this map is an isometry.

o As S(R") is dense in L2(R"), and L?(Q) is complete, we extend this operator to a one
from L2(R") to L2(Q) by defining (W, f) := lim,_s00(W, ¢,,), where ¢, € S(R") and
¢n — f in L2(R™).
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Gaussian Hilbert space. Construction of white noise (1)

Definition

A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Q, F,P), equipped with the L?(Q, F,P) inner product and closed with respect to the
corresponding norm.

o To define a Gaussian Hilbert space {(W, f) : f € L2(R")}, consider the map from S(R")
to L2(Q) given by ¢ — (W, ¢). Since E[(W, ¢)?] = |]¢HL2(R,, this map is an isometry.

o As S(R") is dense in L2(R"), and L?(Q) is complete, we extend this operator to a one
from L2(R") to L2(Q) by defining (W, f) := lim,_s00(W, ¢,,), where ¢, € S(R") and
¢n — f in L2(R™).

o By dominated convergence E[e/("W:¢n)] — E[e/(W:F)]; Hence the random variable (W, f) is
centred Gaussian with variance equal to Hfoz(Rn).
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Gaussian Hilbert space. Construction of white noise (1)

Definition

A Gaussian Hilbert space is a collection of Gaussian random variables on a common probability
space (Q, F,P), equipped with the L?(Q, F,P) inner product and closed with respect to the
corresponding norm.

o To define a Gaussian Hilbert space {(W, f) : f € L2(R")}, consider the map from S(R")
to L2(Q) given by ¢ — (W, ¢). Since E[(W, ¢)?] = |]¢HL2(R,, this map is an isometry.

o As S(R") is dense in L2(R"), and L?(Q) is complete, we extend this operator to a one
from L2(R") to L2(Q) by defining (W, f) := lim,_s00(W, ¢,,), where ¢, € S(R") and
¢n — f in L2(R™).

o By dominated convergence E[e/("W:¢n)] — E[e/(W:F)]; Hence the random variable (W, f) is
centred Gaussian with variance equal to Hfoz(Rn).

o We call {(W,f):f € L2(R")} a white noise Gaussian Hilbert space.
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Gaussian Hilbert space. Construction of white noise (I11)

e For f,g € L?(R"), we may apply this to (W, f + g) to see that
Cov[(W, f),(W,g)] = (f,g)2wny; i-e. if f, g are orthogonal in L?(R™), the (Gaussian)
random variables (W, f), (W, g) are independent.
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Gaussian Hilbert space. Construction of white noise (I11)

e For f,g € L?(R"), we may apply this to (W, f + g) to see that
Cov[(W, f),(W,g)] = (f,g)2wny; i-e. if f, g are orthogonal in L2(R™), the (Gaussian)
random variables (W, f), (W, g) are independent.

o We formally rewrite the above as Cov[(W, f),(W,g)] = [gn Jgn 0(x — ¥)f(x)g(y) dx dy,
and say that W has the covariance kernel 6(x — y), where ¢ denotes the Dirac measure.
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Gaussian Hilbert space. Construction of white noise (I11)

e For f,g € L?(R"), we may apply this to (W, f + g) to see that
Cov[(W, f),(W,g)] = (f,g)2wny; i-e. if f, g are orthogonal in L2(R™), the (Gaussian)
random variables (W, f), (W, g) are independent.

o We formally rewrite the above as Cov[(W, f),(W,g)] = [gn Jgn 0(x — ¥)f(x)g(y) dx dy,
and say that W has the covariance kernel 6(x — y), where ¢ denotes the Dirac measure.

@ One may also define stochastic processes on the white noise space. Example: let n =1,
setting B;(W) := (W, Lo,)), where t — 1, )(t) € L*(R) is the indicator function of
(a, b), can be shown to yield a Brownian motion process.
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Gaussian Hilbert space. Construction of white noise (I11)

e For f,g € L?(R"), we may apply this to (W, f + g) to see that
Cov[(W, f),(W,g)] = (f,g)2wny; i-e. if f, g are orthogonal in L2(R™), the (Gaussian)
random variables (W, f), (W, g) are independent.

o We formally rewrite the above as Cov[(W, f),(W,g)] = [gn Jgn 0(x — ¥)f(x)g(y) dx dy,
and say that W has the covariance kernel 6(x — y), where ¢ denotes the Dirac measure.

@ One may also define stochastic processes on the white noise space. Example: let n =1,
setting B;(W) := (W, Lo,)), where t — 1, )(t) € L*(R) is the indicator function of
(a, b), can be shown to yield a Brownian motion process.

@ Construction of other fractional Gaussian Hilbert spaces: find a suitable characteristic
functional, some Hilbert space and a dense subspace (here we used L% and S); use
Bochner-Minlos thm; extend isometrically.
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Log-correlated Gaussian field (LGF)

Definition
The LGF is a centred real-valued Gaussian random tempered distribution h on R”, defined
modulo a global additive constant, whose distribution is determined by the covariance

COV((h7 ¢1)7 (ha ¢2)) = /R"XR" (Iog |y i Z’ +g(y72)) ¢1(y)¢2(z) dy dz, 1,92 € SO(RH),

where So(R") := {f € S(R") : [ga f(x) dx =0} and g is a bounded function on R” x R".
Here centred means that E[(h, ¢)] = 0 for all € So(R"). A covariance kernel such as above is
said to be of log-type.

v
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Log-correlated Gaussian field (LGF)

Definition
The LGF is a centred real-valued Gaussian random tempered distribution h on R”, defined
modulo a global additive constant, whose distribution is determined by the covariance

COV((hv ¢1)7 (ha ¢2)) = /R"XR" (Iog |y i Z’ +g(y72)) ¢1(y)¢2(z) dy dz, 1,92 € SO(RH),

where So(R") := {f € S(R") : [ga f(x) dx =0} and g is a bounded function on R” x R".
Here centred means that E[(h o) = 0 for all € So(R"). A covariance kernel such as above is
said to be of log-type.

v

o Equivalently one may define the LGF as h = (—A)~"/*W, where W is the white noise.
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Log-correlated Gaussian field (LGF)

Definition
The LGF is a centred real-valued Gaussian random tempered distribution h on R”, defined
modulo a global additive constant, whose distribution is determined by the covariance

Cov((h, ¢1), (h, $2)) = /R”XR" ('Ogb,izl +g(%z)> ¢1(y)p2(z)dy dz,  é1,¢2 € So(R"),

where So(R") := {f € S(R") : [g. f(x) dx = 0} and g is a bounded function on R” x R".
Here centred means that E[(h o) = 0 for all € So(R"). A covariance kernel such as above is
said to be of log-type.

o Equivalently one may define the LGF as h = (—A)~"/*W, where W is the white noise.

e When n =1, the LGF can be shown to be morally the weak limit in S’(R) of FBm B as
H — 0. Recall: the paths of B belong to C"~¢(R) for all £ > 0; hence the LGF belongs
to C7¢(R) for every € > 0.
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Gaussian multiplicative chaos measure (GMC)

@ Roughly speaking, GMC is a theory which defines rigorously random measures
M, (dy) = XM (dy),

where o is a Radon measure on some metric space (D, d),y > 0 is a parameter, and
X: D — Ris a centred Gaussian field.
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Gaussian multiplicative chaos measure (GMC)

@ Roughly speaking, GMC is a theory which defines rigorously random measures
M, (dy) = &*Wo(dy),

where o is a Radon measure on some metric space (D, d),y > 0 is a parameter, and
X: D — Ris a centred Gaussian field.

@ Typically one constructs such measures from random fields X that are not defined as
functions, so pointwise evaluations X(y) do not make sense (LGF is an important example)
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Gaussian multiplicative chaos measure (GMC)

@ Roughly speaking, GMC is a theory which defines rigorously random measures
M (dy) = e Wo(dy),

where o is a Radon measure on some metric space (D, d),y > 0 is a parameter, and
X: D — R is a centred Gaussian field.
@ Typically one constructs such measures from random fields X that are not defined as
functions, so pointwise evaluations X(y) do not make sense (LGF is an important example)
@ The idea to construct a GMC measure is rather simple: define the measure as the limit as
e — 0 of C.e" <o (dx) where X. is a sequence converging to X, and C. is some
normalisation sequence which ensures that the limit is non-trivial (i.e. we do not end up
with the zero measure)
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GMC measure. Construction.

@ Let 0 be a smooth mollifier. Set X, := X x 0., where X has a covariance kernel of
log-type, and 6. := El—nH (g) It can be shown that the random measures

)— YE[Xe ()2
2

M. . (dy) = % Lo(dy)

converge in probability in the space of Radon measures towards a random measure M,
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GMC measure. Construction.

@ Let 0 be a smooth mollifier. Set X, := X x 0., where X has a covariance kernel of
log-type, and 6. := ;79 (g) It can be shown that the random measures

)— Y2E[Xe (1)?]
2 g

(dy)

converge in probability in the space of Radon measures towards a random measure M,

M. o (dy) = XV

@ The random measure M, does not depend on the mollifier 6
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GMC measure. Construction.

@ Let 0 be a smooth mollifier. Set X, := X x 0., where X has a covariance kernel of

log-type, and 6. := ;79 (g) It can be shown that the random measures

)— Y2E[Xe (1)?]
2 g

M. ~(dy) = 7%V (dy)

converge in probability in the space of Radon measures towards a random measure M,
@ The random measure M, does not depend on the mollifier 6
o If o(dy) = f(y)dy, with f > 0, the measure M, is different from 0 iff v < v/2n.
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GMC measure. Construction.

Let # be a smooth mollifier. Set X. := X * 6., where X has a covariance kernel of

log-type, and 6. := ;79 (g) It can be shown that the random measures

)— Y2E[Xe (1)?]
2 g

M. ~(dy) = 7%V (dy)

converge in probability in the space of Radon measures towards a random measure M,

The random measure M, does not depend on the mollifier 0
If o(dy) = f(y)dy, with f > 0, the measure M, is different from 0 iff v < v/2n.

The proof of this convergence is divided into two cases: v € (0, +/n), the so-called
L2-range, which is easier, and then v € [\/n,/2n), which uses more refined techniques.
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GMC measure. Construction.

Let # be a smooth mollifier. Set X. := X * 6., where X has a covariance kernel of
log-type, and 6. := ;79 (g) It can be shown that the random measures

)— Y2E[Xe (1)?]
2 g

M. ~(dy) = 7%V (dy)

converge in probability in the space of Radon measures towards a random measure M,

The random measure M, does not depend on the mollifier 0
If o(dy) = f(y)dy, with f > 0, the measure M, is different from 0 iff v < v/2n.

The proof of this convergence is divided into two cases: v € (0, +/n), the so-called
L2-range, which is easier, and then v € [\/n,/2n), which uses more refined techniques.

@ One could consider other, more general approximations of the field X rather than of the
form X % 0, as well for the conclusion to hold
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GMC measure. Properties.

For v < v/2n, assume o(dx) = f(x) dx, with f bounded.
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GMC measure. Properties.

For v < v/2n, assume o(dx) = f(x) dx, with f bounded.

@ Moments of GMC measure associated to LGF: For any ball B C D we have
E[M,(B)9] < +0 iff g € (—o0, %) Compare this with moments of Gaussians (i.e.
Fernique thm)!
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GMC measure. Properties.

For v < v/2n, assume o(dx) = f(x) dx, with f bounded.

@ Moments of GMC measure associated to LGF: For any ball B C D we have
E[M,(B)9] < +0 iff g € (—o0, %) Compare this with moments of Gaussians (i.e.
Fernique thm)!

o Multifractal behavior of M,: Assume that f is continuous. Then for all x and all
q € (—o0, %) there exists some positive constant C, = C(f, g, K) such that

E[M,(B(x,r))"] "= Certla),

where £(q) = (n + g)q - 722—"2 is called the structure function of M,. Roughly speaking,
the GMC measure is Hélder around each point.
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Thank you!
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