Fractional Gaussian fields and the Gaussian multiplicative chaos measure

Patrik Nummi

University of Helsinki

DOMAST Seminar March 11, 2022

Outline of the talk

Introduction

2 Random fields

- Some basics on random processes and fields
- Gaussians: on finite- and infinite-dimensional spaces
- Examples of Gaussian processes

Fractional fields

• Construction of the white noise L^2 space

4 Gaussian multiplicative chaos measure

- Definition and a sketch of how to construct GMC
- Basic properties of GMC

Motivation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• The stochastic pressure equation: $U \subset \mathbb{R}^n$ a bounded, smooth domain, consider

$$-
abla_{x} \cdot (p(x;\omega) \diamond
abla_{x} u(x;\omega)) = 0, \qquad x \in U, \, \omega \in \Omega,$$

with some (non-random) boundary data. Here \diamond is the so-called *Wick product*; acts as a stochastic renormalization of sorts

- Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous medium. The plot of the solution looks like a percolation diagram
- Modelling suggests to take p(x; ω) = e^{◊X(x;ω)}, the Wick exponential of a random field X as the permeability; in this case measurement data suggests to take X as the log-correlated Gaussian field.

Motivation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• The stochastic pressure equation: $U \subset \mathbb{R}^n$ a bounded, smooth domain, consider

$$-
abla_{\mathbf{x}} \cdot (\mathbf{p}(\mathbf{x};\omega) \diamond
abla_{\mathbf{x}} u(\mathbf{x};\omega)) = 0, \qquad \mathbf{x} \in U, \, \omega \in \Omega,$$

with some (non-random) boundary data. Here \diamond is the so-called *Wick product*; acts as a stochastic renormalization of sorts

- Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous medium. The plot of the solution looks like a percolation diagram
- Modelling suggests to take p(x; ω) = e^{oX(x;ω)}, the Wick exponential of a random field X as the permeability; in this case measurement data suggests to take X as the log-correlated Gaussian field.

Motivation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

• The stochastic pressure equation: $U \subset \mathbb{R}^n$ a bounded, smooth domain, consider

$$-
abla_{\mathbf{x}} \cdot (\mathbf{p}(\mathbf{x};\omega) \diamond
abla_{\mathbf{x}} u(\mathbf{x};\omega)) = 0, \qquad \mathbf{x} \in U, \, \omega \in \Omega,$$

with some (non-random) boundary data. Here \diamond is the so-called *Wick product*; acts as a stochastic renormalization of sorts

- Related to the ST1 Deep Heat project in Espoo, models water seeping through a porous medium. The plot of the solution looks like a percolation diagram
- Modelling suggests to take p(x; ω) = e^{◊X(x;ω)}, the Wick exponential of a random field X as the permeability; in this case measurement data suggests to take X as the log-correlated Gaussian field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} \, dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} \, dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} \, dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} \, dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- A random vector X is a measurable mapping $(\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. When n = 1, X is called a random variable.
- We define the *characteristic function* of X (the Fourier transform of $Q_X = \mathbb{P} \circ X^{-1}$)

$$\widehat{f}(t) = \int_{\Omega} e^{it \cdot X(\omega)} \, dQ_X(\omega), \qquad t \in \mathbb{R}^n,$$

- Let T be a set and (E, \mathcal{E}) a measurable space. A random field indexed by T is a collection $(X_t : t \in T)$ of random vectors $X_t : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$.
- Typically we take $T = \mathbb{R}^n$. When n = 1, X is referred to as a *stochastic process* rather than a field.
- Fix $\omega \in \Omega$. The map $t \mapsto X_t(\omega), t \in T$ is called the *(sample) path* of the random field.

- Normal distribution shows up often in applications, even when not assuming a priori Gaussianity, due to Central Limit Theorem -type results
- In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are stable under linear transformation and limits
- Many of the Gaussian techniques can be adapted with some modification for more difficult distributions
- One can obtain many other distributions from transformations of Gaussians

- Normal distribution shows up often in applications, even when not assuming a priori Gaussianity, due to Central Limit Theorem -type results
- In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are stable under linear transformation and limits
- Many of the Gaussian techniques can be adapted with some modification for more difficult distributions
- One can obtain many other distributions from transformations of Gaussians

- Normal distribution shows up often in applications, even when not assuming a priori Gaussianity, due to Central Limit Theorem -type results
- In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are stable under linear transformation and limits
- Many of the Gaussian techniques can be adapted with some modification for more difficult distributions
- One can obtain many other distributions from transformations of Gaussians

- Normal distribution shows up often in applications, even when not assuming a priori Gaussianity, due to Central Limit Theorem -type results
- In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are stable under linear transformation and limits
- Many of the Gaussian techniques can be adapted with some modification for more difficult distributions
- One can obtain many other distributions from transformations of Gaussians

- Normal distribution shows up often in applications, even when not assuming a priori Gaussianity, due to Central Limit Theorem -type results
- In many ways the "easiest" case (cf. linear vs non-linear DE): In particular Gaussians are stable under linear transformation and limits
- Many of the Gaussian techniques can be adapted with some modification for more difficult distributions
- One can obtain many other distributions from transformations of Gaussians

Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function $\hat{f}(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$ for some $\mu \in \mathbb{R}, \sigma^2 > 0$. The parameter μ is called the mean, σ^2 is called the variance of X.

- X is said to be centred if $\mu = 0$; X is standard Gaussian if $\mu = 0, \sigma^2 = 1$.
- A random vector X = (X₁,...,X_n) with values in ℝⁿ is said to be Gaussian if X · t ∈ ℝ is a Gaussian random variable for all t ∈ ℝⁿ.

Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function $\hat{f}(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$ for some $\mu \in \mathbb{R}, \sigma^2 > 0$. The parameter μ is called the mean, σ^2 is called the variance of X.

- X is said to be centred if $\mu = 0$; X is standard Gaussian if $\mu = 0, \sigma^2 = 1$.
- A random vector $X = (X_1, ..., X_n)$ with values in \mathbb{R}^n is said to be *Gaussian* if $X \cdot t \in \mathbb{R}$ is a Gaussian random variable for all $t \in \mathbb{R}^n$.

Gaussian random variables: the finite-dimensional case

Definition

A Gaussian random variable X is a real-valued random variable with characteristic function $\hat{f}(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$ for some $\mu \in \mathbb{R}, \sigma^2 > 0$. The parameter μ is called the mean, σ^2 is called the variance of X.

- X is said to be centred if $\mu = 0$; X is standard Gaussian if $\mu = 0, \sigma^2 = 1$.
- A random vector $X = (X_1, ..., X_n)$ with values in \mathbb{R}^n is said to be *Gaussian* if $X \cdot t \in \mathbb{R}$ is a Gaussian random variable for all $t \in \mathbb{R}^n$.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_{H}$.

- A random variable X with values in H is said to be *Gaussian* if the real-valued random variable $(h, X)_H$ is Gaussian for every $h \in H$.
- Characterisation of Gaussians: if X is a centred random variable with values in H, the following can be shown to be equivalent:
 - 🕛 X is Gaussian;
 - ⁽²⁾ There exists a positive, symmetric and continuous linear operator $Q: H \rightarrow H$ such that the Fourier transform of X is given by

$$\mathbb{E}[\exp(i(X,h)_H)] = \exp\left(-rac{1}{2}(Qh,h)_H
ight), \qquad orall h \in H.$$

- Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There exists a constant $\beta > 0$ such that $\mathbb{E}[\exp(\beta \|X\|_{H}^{2})] < +\infty$.
- Independent Gaussians form a linear space.
- Fact: $L^2(\Omega)$ -limit of Gaussians is Gaussian; moreover, for Gaussian random variables many forms of convergence are actually equivalent.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_H$.

- A random variable X with values in H is said to be *Gaussian* if the real-valued random variable $(h, X)_H$ is Gaussian for every $h \in H$.
- Characterisation of Gaussians: if X is a centred random variable with values in H, the following can be shown to be equivalent:
 - X is Gaussian;
 - 3 There exists a positive, symmetric and continuous linear operator $Q: H \rightarrow H$ such that the Fourier transform of X is given by

$$\mathbb{E}[\exp(i(X,h)_H)] = \exp\left(-rac{1}{2}(Qh,h)_H
ight), \qquad orall h \in H.$$

- Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There exists a constant $\beta > 0$ such that $\mathbb{E}[\exp(\beta \|X\|_{H}^{2})] < +\infty$.
- Independent Gaussians form a linear space.
- Fact: $L^2(\Omega)$ -limit of Gaussians is Gaussian; moreover, for Gaussian random variables many forms of convergence are actually equivalent.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_H$.

- A random variable X with values in H is said to be *Gaussian* if the real-valued random variable $(h, X)_H$ is Gaussian for every $h \in H$.
- Characterisation of Gaussians: if X is a centred random variable with values in H, the following can be shown to be equivalent:
 - X is Gaussian;
 - ② There exists a positive, symmetric and continuous linear operator Q: H → H such that the Fourier transform of X is given by

$$\mathbb{E}[\exp(i(X,h)_H)] = \exp\left(-rac{1}{2}(Qh,h)_H
ight), \qquad orall h \in H.$$

- Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There exists a constant $\beta > 0$ such that $\mathbb{E}[\exp(\beta \|X\|_{H}^{2})] < +\infty$.
- Independent Gaussians form a linear space.
- Fact: $L^2(\Omega)$ -limit of Gaussians is Gaussian; moreover, for Gaussian random variables many forms of convergence are actually equivalent.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_H$.

- A random variable X with values in H is said to be *Gaussian* if the real-valued random variable $(h, X)_H$ is Gaussian for every $h \in H$.
- Characterisation of Gaussians: if X is a centred random variable with values in H, the following can be shown to be equivalent:
 - X is Gaussian;
 - ② There exists a positive, symmetric and continuous linear operator Q: H → H such that the Fourier transform of X is given by

$$\mathbb{E}[\exp(i(X,h)_H)] = \exp\left(-rac{1}{2}(Qh,h)_H
ight), \qquad orall h \in H.$$

- Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There exists a constant $\beta > 0$ such that $\mathbb{E}[\exp(\beta \|X\|_{H}^{2})] < +\infty$.
- Independent Gaussians form a linear space.
- Fact: L²(Ω)-limit of Gaussians is Gaussian; moreover, for Gaussian random variables many forms of convergence are actually equivalent.

Let H be a real Hilbert space with scalar product $(\cdot, \cdot)_H$.

- A random variable X with values in H is said to be Gaussian if the real-valued random variable (h, X)_H is Gaussian for every h ∈ H.
- Characterisation of Gaussians: if X is a centred random variable with values in H, the following can be shown to be equivalent:
 - X is Gaussian;
 - ② There exists a positive, symmetric and continuous linear operator Q: H → H such that the Fourier transform of X is given by

$$\mathbb{E}[\exp(i(X,h)_H)] = \exp\left(-rac{1}{2}(Qh,h)_H
ight), \qquad orall h \in H.$$

- Moments of Gaussians (Fernique thm) Let X be a Hilbert-space valued Gaussian. There exists a constant $\beta > 0$ such that $\mathbb{E}[\exp(\beta \|X\|_{H}^{2})] < +\infty$.
- Independent Gaussians form a linear space.
- Fact: $L^2(\Omega)$ -limit of Gaussians is Gaussian; moreover, for Gaussian random variables many forms of convergence are actually equivalent.

Examples of Gaussian processes (I)

- Karhunen-Loève expansion. Let H be a separable Hilbert space. Let (e_j) ⊂ H be an orthonormal basis, (ξ_j) a sequence of real-valued independent, standard Gaussian random variables and (σ_j) ⊂ ℝ₊ satisfying ∑_{j=1}[∞] σ_j² < +∞. Then any Gaussian X ∈ H can be written as X = ∑_{j=1}[∞] σ_jξ_je_j, where the sum converges almost surely with respect to || · ||_H.
- Brownian motion. Let (ξ_i) be independent standard Gaussian random variables. For each n, define a random step process $W_n(t) := \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor nt \rfloor} \xi_k, t \in [0, 1]$. On the limit as $n \to \infty$ we obtain a process called the Brownian motion.
- Brownian motion (W_t) satisfies $\mathbb{E}[W_t] = 0$, $Var(W_t) = t$, $Cov(W_t, W_s) = t \land s$, for all $s, t \in [0, 1]$.

Examples of Gaussian processes (I)

- Karhunen-Loève expansion. Let H be a separable Hilbert space. Let $(e_j) \subset H$ be an orthonormal basis, (ξ_j) a sequence of real-valued independent, standard Gaussian random variables and $(\sigma_j) \subset \mathbb{R}_+$ satisfying $\sum_{j=1}^{\infty} \sigma_j^2 < +\infty$. Then any Gaussian $X \in H$ can be written as $X = \sum_{j=1}^{\infty} \sigma_j \xi_j e_j$, where the sum converges almost surely with respect to $\|\cdot\|_H$.
- Brownian motion. Let (ξ_i) be independent standard Gaussian random variables. For each n, define a random step process $W_n(t) := \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor nt \rfloor} \xi_k, t \in [0, 1]$. On the limit as $n \to \infty$ we obtain a process called the Brownian motion.
- Brownian motion (W_t) satisfies $\mathbb{E}[W_t] = 0$, $Var(W_t) = t$, $Cov(W_t, W_s) = t \land s$, for all $s, t \in [0, 1]$.

Examples of Gaussian processes (I)

- Karhunen-Loève expansion. Let H be a separable Hilbert space. Let $(e_j) \subset H$ be an orthonormal basis, (ξ_j) a sequence of real-valued independent, standard Gaussian random variables and $(\sigma_j) \subset \mathbb{R}_+$ satisfying $\sum_{j=1}^{\infty} \sigma_j^2 < +\infty$. Then any Gaussian $X \in H$ can be written as $X = \sum_{j=1}^{\infty} \sigma_j \xi_j e_j$, where the sum converges almost surely with respect to $\|\cdot\|_H$.
- Brownian motion. Let (ξ_i) be independent standard Gaussian random variables. For each n, define a random step process $W_n(t) := \frac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor nt \rfloor} \xi_k, t \in [0, 1]$. On the limit as $n \to \infty$ we obtain a process called the Brownian motion.
- Brownian motion (W_t) satisfies $\mathbb{E}[W_t] = 0$, $Var(W_t) = t$, $Cov(W_t, W_s) = t \land s$, for all $s, t \in [0, 1]$.

Examples of Gaussian processes (II)

• Fractional Brownian motion (FBm). A continuous time Gaussian process B^H on [0,1] which satisfies $\mathbb{E}[B^H(0)] = 0$, $\mathbb{E}[B^H(t)] = 0$, $\forall t \in [0,1]$, and

$$\mathsf{Cov}(B^{H}(t),B^{H}(s)) = rac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t-s|^{2H}
ight) \quad orall t \in [0,1],$$

where $H \in (0, 1)$ is called the *Hurst index* (for H = 1/2 one obtains the Brownian motion).

- Regularity of FBm: sample paths of B^H (i.e. functions $t \mapsto B^H(t, \omega)$) are nowhere differentiable. However, the sample path of B^H is Hölder with index $H \varepsilon$, for every $\varepsilon > 0$.
- One may also consider several dimensional variants of BM and FBm taking their values in \mathbb{R}^n , for instance by requiring that each of the projections B_i^H , i = 1, ..., n, are one-dimensional Fractional Brownian motions.

Examples of Gaussian processes (II)

• Fractional Brownian motion (FBm). A continuous time Gaussian process B^H on [0,1] which satisfies $\mathbb{E}[B^H(0)] = 0$, $\mathbb{E}[B^H(t)] = 0$, $\forall t \in [0,1]$, and

$$\mathsf{Cov}(B^{H}(t),B^{H}(s)) = rac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t-s|^{2H}
ight) \quad orall t \in [0,1],$$

where $H \in (0, 1)$ is called the *Hurst index* (for H = 1/2 one obtains the Brownian motion).

- Regularity of FBm: sample paths of B^H (i.e. functions t → B^H(t,ω)) are nowhere differentiable. However, the sample path of B^H is Hölder with index H − ε, for every ε > 0.
- One may also consider several dimensional variants of BM and FBm taking their values in \mathbb{R}^n , for instance by requiring that each of the projections B_i^H , i = 1, ..., n, are one-dimensional Fractional Brownian motions.

Examples of Gaussian processes (II)

• Fractional Brownian motion (FBm). A continuous time Gaussian process B^H on [0,1] which satisfies $\mathbb{E}[B^H(0)] = 0$, $\mathbb{E}[B^H(t)] = 0$, $\forall t \in [0,1]$, and

$$\mathsf{Cov}(B^{H}(t),B^{H}(s)) = rac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t-s|^{2H}
ight) \quad orall t \in [0,1],$$

where $H \in (0, 1)$ is called the *Hurst index* (for H = 1/2 one obtains the Brownian motion).

- Regularity of FBm: sample paths of B^H (i.e. functions t → B^H(t,ω)) are nowhere differentiable. However, the sample path of B^H is Hölder with index H − ε, for every ε > 0.
- One may also consider several dimensional variants of BM and FBm taking their values in \mathbb{R}^n , for instance by requiring that each of the projections B_i^H , i = 1, ..., n, are one-dimensional Fractional Brownian motions.

Plots of FBm sample paths with varying Hurst index

Figure: Simulations of sample paths of a single realisation of FBm ("with fixed $\omega \in \Omega$ ") with Hurst parameter H = 0.15, H = 0.55, H = 0.95

March 11, 2022

- Recall the *Schwartz space* $S(\mathbb{R}^n)$, the space of (smooth) functions on \mathbb{R}^n whose derivatives are rapidly decreasing, and its dual $S'(\mathbb{R}^n)$, the space of *tempered distributions*.
- We say that a complex-valued function Φ on $\mathcal{S}(\mathbb{R}^n)$ is the characteristic function of a probability measure ν on $\mathcal{S}'(\mathbb{R}^n)$ if $\Phi(\phi) = \int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(x,\phi)} d\nu(x), \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$
- Bochner-Minlos Theorem for $\Omega = S'(\mathbb{R}^n)$: A complex-valued function Φ on $S(\mathbb{R}^n)$ is the characteristic function of a (unique) probability measure ν on $S'(\mathbb{R}^n)$ iff $\Phi(0) = 1$, Φ is continuous, and Φ is positive definite.
- Define $\Phi_0(\phi) := \exp\left(-\frac{1}{2}\|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. By Bochner-Minlos theorem, there exists a unique probability measure μ on \mathcal{S}' having Φ_0 as its characteristic function; we call μ the white noise measure.

• Since we have $\int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(W,\phi)} d\mu(W) = \exp\left(-\frac{1}{2} \|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$, and characteristic functions determine distributions, the random variable (W,ϕ) is a centred Gaussian with variance equal to $\|\phi\|_{L^2(\mathbb{R}^n)}^2$, for any $\phi \in \mathcal{S}(\mathbb{R}^n)$.

- Recall the Schwartz space S(Rⁿ), the space of (smooth) functions on Rⁿ whose derivatives are rapidly decreasing, and its dual S'(Rⁿ), the space of tempered distributions.
- We say that a complex-valued function Φ on $\mathcal{S}(\mathbb{R}^n)$ is the characteristic function of a probability measure ν on $\mathcal{S}'(\mathbb{R}^n)$ if $\Phi(\phi) = \int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(x,\phi)} d\nu(x), \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$
- Bochner-Minlos Theorem for $\Omega = S'(\mathbb{R}^n)$: A complex-valued function Φ on $S(\mathbb{R}^n)$ is the characteristic function of a (unique) probability measure ν on $S'(\mathbb{R}^n)$ iff $\Phi(0) = 1$, Φ is continuous, and Φ is positive definite.
- Define $\Phi_0(\phi) := \exp\left(-\frac{1}{2}\|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. By Bochner-Minlos theorem, there exists a unique probability measure μ on \mathcal{S}' having Φ_0 as its characteristic function; we call μ the white noise measure.

• Since we have $\int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(W,\phi)} d\mu(W) = \exp\left(-\frac{1}{2} \|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$, and characteristic functions determine distributions, the random variable (W,ϕ) is a centred Gaussian with variance equal to $\|\phi\|_{L^2(\mathbb{R}^n)}^2$, for any $\phi \in \mathcal{S}(\mathbb{R}^n)$.

- Recall the Schwartz space S(Rⁿ), the space of (smooth) functions on Rⁿ whose derivatives are rapidly decreasing, and its dual S'(Rⁿ), the space of tempered distributions.
- We say that a complex-valued function Φ on $\mathcal{S}(\mathbb{R}^n)$ is the characteristic function of a probability measure ν on $\mathcal{S}'(\mathbb{R}^n)$ if $\Phi(\phi) = \int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(x,\phi)} d\nu(x), \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$
- Bochner-Minlos Theorem for $\Omega = S'(\mathbb{R}^n)$: A complex-valued function Φ on $S(\mathbb{R}^n)$ is the characteristic function of a (unique) probability measure ν on $S'(\mathbb{R}^n)$ iff $\Phi(0) = 1$, Φ is continuous, and Φ is positive definite.
- Define $\Phi_0(\phi) := \exp\left(-\frac{1}{2}\|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. By Bochner-Minlos theorem, there exists a unique probability measure μ on \mathcal{S}' having Φ_0 as its characteristic function; we call μ the white noise measure.

• Since we have $\int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(W,\phi)} d\mu(W) = \exp\left(-\frac{1}{2} \|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$, and characteristic functions determine distributions, the random variable (W,ϕ) is a centred Gaussian with variance equal to $\|\phi\|_{L^2(\mathbb{R}^n)}^2$, for any $\phi \in \mathcal{S}(\mathbb{R}^n)$.

- Recall the Schwartz space S(Rⁿ), the space of (smooth) functions on Rⁿ whose derivatives are rapidly decreasing, and its dual S'(Rⁿ), the space of tempered distributions.
- We say that a complex-valued function Φ on $\mathcal{S}(\mathbb{R}^n)$ is the characteristic function of a probability measure ν on $\mathcal{S}'(\mathbb{R}^n)$ if $\Phi(\phi) = \int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(x,\phi)} d\nu(x), \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$
- Bochner-Minlos Theorem for $\Omega = S'(\mathbb{R}^n)$: A complex-valued function Φ on $S(\mathbb{R}^n)$ is the characteristic function of a (unique) probability measure ν on $S'(\mathbb{R}^n)$ iff $\Phi(0) = 1$, Φ is continuous, and Φ is positive definite.
- Define $\Phi_0(\phi) := \exp\left(-\frac{1}{2}\|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. By Bochner-Minlos theorem, there exists a unique probability measure μ on \mathcal{S}' having Φ_0 as its characteristic function; we call μ the *white noise measure*.
- Since we have $\int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(W,\phi)} d\mu(W) = \exp\left(-\frac{1}{2} \|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$, and characteristic functions determine distributions, the random variable (W,ϕ) is a centred Gaussian with variance equal to $\|\phi\|_{L^2(\mathbb{R}^n)}^2$, for any $\phi \in \mathcal{S}(\mathbb{R}^n)$.

- Recall the Schwartz space S(Rⁿ), the space of (smooth) functions on Rⁿ whose derivatives are rapidly decreasing, and its dual S'(Rⁿ), the space of tempered distributions.
- We say that a complex-valued function Φ on $\mathcal{S}(\mathbb{R}^n)$ is the characteristic function of a probability measure ν on $\mathcal{S}'(\mathbb{R}^n)$ if $\Phi(\phi) = \int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(x,\phi)} d\nu(x), \quad \forall \phi \in \mathcal{S}(\mathbb{R}^n).$
- Bochner-Minlos Theorem for $\Omega = S'(\mathbb{R}^n)$: A complex-valued function Φ on $S(\mathbb{R}^n)$ is the characteristic function of a (unique) probability measure ν on $S'(\mathbb{R}^n)$ iff $\Phi(0) = 1$, Φ is continuous, and Φ is positive definite.
- Define $\Phi_0(\phi) := \exp\left(-\frac{1}{2}\|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$ for all $\phi \in \mathcal{S}(\mathbb{R}^n)$. By Bochner-Minlos theorem, there exists a unique probability measure μ on \mathcal{S}' having Φ_0 as its characteristic function; we call μ the *white noise measure*.
- Since we have $\int_{\mathcal{S}'(\mathbb{R}^n)} e^{i(W,\phi)} d\mu(W) = \exp\left(-\frac{1}{2} \|\phi\|_{L^2(\mathbb{R}^n)}^2\right)$, and characteristic functions determine distributions, the random variable (W,ϕ) is a centred Gaussian with variance equal to $\|\phi\|_{L^2(\mathbb{R}^n)}^2$, for any $\phi \in \mathcal{S}(\mathbb{R}^n)$.

Definition

- To define a Gaussian Hilbert space {(W, f) : f ∈ L²(ℝⁿ)}, consider the map from S(ℝⁿ) to L²(Ω) given by φ → (W, φ). Since E[(W, φ)²] = ||φ||²_{L²(ℝⁿ)}, this map is an isometry.
- As $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$, and $L^2(\Omega)$ is complete, we extend this operator to a one from $L^2(\mathbb{R}^n)$ to $L^2(\Omega)$ by defining $(W, f) := \lim_{n \to \infty} (W, \phi_n)$, where $\phi_n \in \mathcal{S}(\mathbb{R}^n)$ and $\phi_n \to f$ in $L^2(\mathbb{R}^n)$.
- By dominated convergence $\mathbb{E}[e^{i(W,\phi_n)}] \to \mathbb{E}[e^{i(W,f)}]$; Hence the random variable (W, f) is centred Gaussian with variance equal to $||f||^2_{L^2(\mathbb{R}^n)}$.
- We call $\{(W, f) : f \in L^2(\mathbb{R}^n)\}$ a white noise Gaussian Hilbert space.

Definition

- To define a Gaussian Hilbert space {(W, f) : f ∈ L²(ℝⁿ)}, consider the map from S(ℝⁿ) to L²(Ω) given by φ → (W, φ). Since E[(W, φ)²] = ||φ||²_{L²(ℝⁿ)}, this map is an isometry.
- As $S(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$, and $L^2(\Omega)$ is complete, we extend this operator to a one from $L^2(\mathbb{R}^n)$ to $L^2(\Omega)$ by defining $(W, f) := \lim_{n \to \infty} (W, \phi_n)$, where $\phi_n \in S(\mathbb{R}^n)$ and $\phi_n \to f$ in $L^2(\mathbb{R}^n)$.
- By dominated convergence $\mathbb{E}[e^{i(W,\phi_n)}] \to \mathbb{E}[e^{i(W,f)}]$; Hence the random variable (W, f) is centred Gaussian with variance equal to $||f||^2_{L^2(\mathbb{R}^n)}$.
- We call $\{(W, f) : f \in L^2(\mathbb{R}^n)\}$ a white noise Gaussian Hilbert space.

Definition

- To define a Gaussian Hilbert space {(W, f) : f ∈ L²(ℝⁿ)}, consider the map from S(ℝⁿ) to L²(Ω) given by φ → (W, φ). Since E[(W, φ)²] = ||φ||²_{L²(ℝⁿ)}, this map is an isometry.
- As S(ℝⁿ) is dense in L²(ℝⁿ), and L²(Ω) is complete, we extend this operator to a one from L²(ℝⁿ) to L²(Ω) by defining (W, f) := lim_{n→∞}(W, φ_n), where φ_n ∈ S(ℝⁿ) and φ_n → f in L²(ℝⁿ).
- By dominated convergence $\mathbb{E}[e^{i(W,\phi_n)}] \to \mathbb{E}[e^{i(W,f)}]$; Hence the random variable (W, f) is centred Gaussian with variance equal to $||f||^2_{L^2(\mathbb{R}^n)}$.
- We call $\{(W, f) : f \in L^2(\mathbb{R}^n)\}$ a white noise Gaussian Hilbert space.

Definition

- To define a Gaussian Hilbert space {(W, f) : f ∈ L²(ℝⁿ)}, consider the map from S(ℝⁿ) to L²(Ω) given by φ → (W, φ). Since E[(W, φ)²] = ||φ||²_{L²(ℝⁿ)}, this map is an isometry.
- As $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$, and $L^2(\Omega)$ is complete, we extend this operator to a one from $L^2(\mathbb{R}^n)$ to $L^2(\Omega)$ by defining $(W, f) := \lim_{n \to \infty} (W, \phi_n)$, where $\phi_n \in \mathcal{S}(\mathbb{R}^n)$ and $\phi_n \to f$ in $L^2(\mathbb{R}^n)$.
- By dominated convergence $\mathbb{E}[e^{i(W,\phi_n)}] \to \mathbb{E}[e^{i(W,f)}]$; Hence the random variable (W, f) is centred Gaussian with variance equal to $||f||^2_{L^2(\mathbb{R}^n)}$.
- We call $\{(W, f) : f \in L^2(\mathbb{R}^n)\}$ a white noise Gaussian Hilbert space.

Definition

- To define a Gaussian Hilbert space {(W, f) : f ∈ L²(ℝⁿ)}, consider the map from S(ℝⁿ) to L²(Ω) given by φ → (W, φ). Since E[(W, φ)²] = ||φ||²_{L²(ℝⁿ)}, this map is an isometry.
- As S(ℝⁿ) is dense in L²(ℝⁿ), and L²(Ω) is complete, we extend this operator to a one from L²(ℝⁿ) to L²(Ω) by defining (W, f) := lim_{n→∞}(W, φ_n), where φ_n ∈ S(ℝⁿ) and φ_n → f in L²(ℝⁿ).
- By dominated convergence $\mathbb{E}[e^{i(W,\phi_n)}] \to \mathbb{E}[e^{i(W,f)}]$; Hence the random variable (W, f) is centred Gaussian with variance equal to $||f||^2_{L^2(\mathbb{R}^n)}$.
- We call $\{(W, f) : f \in L^2(\mathbb{R}^n)\}$ a white noise Gaussian Hilbert space.

- For $f,g \in L^2(\mathbb{R}^n)$, we may apply this to (W, f + g) to see that $\operatorname{Cov}[(W, f), (W, g)] = (f, g)_{L^2(\mathbb{R}^n)}$; i.e. if f, g are orthogonal in $L^2(\mathbb{R}^n)$, the (Gaussian) random variables (W, f), (W, g) are independent.
- We formally rewrite the above as $Cov[(W, f), (W, g)] = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \delta(x y) f(x)g(y) dx dy$, and say that W has the *covariance kernel* $\delta(x - y)$, where δ denotes the Dirac measure.
- One may also define stochastic processes on the white noise space. Example: let n = 1, setting $B_t(W) := (W, \mathbb{1}_{(0,t)})$, where $t \mapsto \mathbb{1}_{(a,b)}(t) \in L^2(\mathbb{R})$ is the indicator function of (a, b), can be shown to yield a Brownian motion process.
- Construction of other fractional Gaussian Hilbert spaces: find a suitable characteristic functional, some Hilbert space and a dense subspace (here we used L² and S); use Bochner-Minlos thm; extend isometrically.

- For $f, g \in L^2(\mathbb{R}^n)$, we may apply this to (W, f + g) to see that $\operatorname{Cov}[(W, f), (W, g)] = (f, g)_{L^2(\mathbb{R}^n)}$; i.e. if f, g are orthogonal in $L^2(\mathbb{R}^n)$, the (Gaussian) random variables (W, f), (W, g) are independent.
- We formally rewrite the above as $Cov[(W, f), (W, g)] = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \delta(x y) f(x)g(y) dx dy$, and say that W has the *covariance kernel* $\delta(x - y)$, where δ denotes the Dirac measure.
- One may also define stochastic processes on the white noise space. Example: let n = 1, setting $B_t(W) := (W, \mathbb{1}_{(0,t)})$, where $t \mapsto \mathbb{1}_{(a,b)}(t) \in L^2(\mathbb{R})$ is the indicator function of (a, b), can be shown to yield a Brownian motion process.
- Construction of other fractional Gaussian Hilbert spaces: find a suitable characteristic functional, some Hilbert space and a dense subspace (here we used L² and S); use Bochner-Minlos thm; extend isometrically.

- For $f, g \in L^2(\mathbb{R}^n)$, we may apply this to (W, f + g) to see that $\operatorname{Cov}[(W, f), (W, g)] = (f, g)_{L^2(\mathbb{R}^n)}$; i.e. if f, g are orthogonal in $L^2(\mathbb{R}^n)$, the (Gaussian) random variables (W, f), (W, g) are independent.
- We formally rewrite the above as $Cov[(W, f), (W, g)] = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \delta(x y) f(x)g(y) dx dy$, and say that W has the *covariance kernel* $\delta(x - y)$, where δ denotes the Dirac measure.
- One may also define stochastic processes on the white noise space. Example: let n = 1, setting $B_t(W) := (W, \mathbb{1}_{(0,t)})$, where $t \mapsto \mathbb{1}_{(a,b)}(t) \in L^2(\mathbb{R})$ is the indicator function of (a, b), can be shown to yield a Brownian motion process.
- Construction of other fractional Gaussian Hilbert spaces: find a suitable characteristic functional, some Hilbert space and a dense subspace (here we used L² and S); use Bochner-Minlos thm; extend isometrically.

- For $f,g \in L^2(\mathbb{R}^n)$, we may apply this to (W, f + g) to see that $\operatorname{Cov}[(W, f), (W, g)] = (f, g)_{L^2(\mathbb{R}^n)}$; i.e. if f, g are orthogonal in $L^2(\mathbb{R}^n)$, the (Gaussian) random variables (W, f), (W, g) are independent.
- We formally rewrite the above as $Cov[(W, f), (W, g)] = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \delta(x y) f(x)g(y) dx dy$, and say that W has the *covariance kernel* $\delta(x - y)$, where δ denotes the Dirac measure.
- One may also define stochastic processes on the white noise space. Example: let n = 1, setting $B_t(W) := (W, \mathbb{1}_{(0,t)})$, where $t \mapsto \mathbb{1}_{(a,b)}(t) \in L^2(\mathbb{R})$ is the indicator function of (a, b), can be shown to yield a Brownian motion process.
- Construction of other fractional Gaussian Hilbert spaces: find a suitable characteristic functional, some Hilbert space and a dense subspace (here we used L² and S); use Bochner-Minlos thm; extend isometrically.

Log-correlated Gaussian field (LGF)

Definition

The LGF is a centred real-valued Gaussian random tempered distribution h on \mathbb{R}^n , defined modulo a global additive constant, whose distribution is determined by the covariance

$$\mathsf{Cov}((h,\phi_1),(h,\phi_2)) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(\log \frac{1}{|y-z|} + g(y,z) \right) \phi_1(y) \phi_2(z) \, dy \, dz, \qquad \phi_1,\phi_2 \in \mathcal{S}_0(\mathbb{R}^n),$$

where $S_0(\mathbb{R}^n) := \{ f \in S(\mathbb{R}^n) : \int_{\mathbb{R}^n} f(x) \, dx = 0 \}$ and g is a bounded function on $\mathbb{R}^n \times \mathbb{R}^n$. Here centred means that $\mathbb{E}[(h, \phi)] = 0$ for all $\phi \in S_0(\mathbb{R}^n)$. A covariance kernel such as above is said to be of *log-type*.

- Equivalently one may define the LGF as $h = (-\Delta)^{-n/4} W$, where W is the white noise.
- When n = 1, the LGF can be shown to be morally the weak limit in $S'(\mathbb{R})$ of FBm B^H as $H \to 0$. Recall: the paths of B^H belong to $C^{H-\varepsilon}(\mathbb{R})$ for all $\varepsilon > 0$; hence the LGF belongs to $C^{-\varepsilon}(\mathbb{R})$ for every $\varepsilon > 0$.

Log-correlated Gaussian field (LGF)

Definition

The LGF is a centred real-valued Gaussian random tempered distribution h on \mathbb{R}^n , defined modulo a global additive constant, whose distribution is determined by the covariance

$$\mathsf{Cov}((h,\phi_1),(h,\phi_2)) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(\log \frac{1}{|y-z|} + g(y,z) \right) \phi_1(y) \phi_2(z) \, dy \, dz, \qquad \phi_1,\phi_2 \in \mathcal{S}_0(\mathbb{R}^n),$$

where $S_0(\mathbb{R}^n) := \{ f \in S(\mathbb{R}^n) : \int_{\mathbb{R}^n} f(x) \, dx = 0 \}$ and g is a bounded function on $\mathbb{R}^n \times \mathbb{R}^n$. Here centred means that $\mathbb{E}[(h, \phi)] = 0$ for all $\phi \in S_0(\mathbb{R}^n)$. A covariance kernel such as above is said to be of *log-type*.

- Equivalently one may define the LGF as $h = (-\Delta)^{-n/4} W$, where W is the white noise.
- When n = 1, the LGF can be shown to be morally the weak limit in $S'(\mathbb{R})$ of FBm B^H as $H \to 0$. Recall: the paths of B^H belong to $C^{H-\varepsilon}(\mathbb{R})$ for all $\varepsilon > 0$; hence the LGF belongs to $C^{-\varepsilon}(\mathbb{R})$ for every $\varepsilon > 0$.

Log-correlated Gaussian field (LGF)

Definition

The LGF is a centred real-valued Gaussian random tempered distribution h on \mathbb{R}^n , defined modulo a global additive constant, whose distribution is determined by the covariance

$$\mathsf{Cov}((h,\phi_1),(h,\phi_2)) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(\log \frac{1}{|y-z|} + g(y,z) \right) \phi_1(y) \phi_2(z) \, dy \, dz, \qquad \phi_1, \phi_2 \in \mathcal{S}_0(\mathbb{R}^n),$$

where $S_0(\mathbb{R}^n) := \{ f \in S(\mathbb{R}^n) : \int_{\mathbb{R}^n} f(x) \, dx = 0 \}$ and g is a bounded function on $\mathbb{R}^n \times \mathbb{R}^n$. Here centred means that $\mathbb{E}[(h, \phi)] = 0$ for all $\phi \in S_0(\mathbb{R}^n)$. A covariance kernel such as above is said to be of *log-type*.

- Equivalently one may define the LGF as $h = (-\Delta)^{-n/4} W$, where W is the white noise.
- When n = 1, the LGF can be shown to be morally the weak limit in $S'(\mathbb{R})$ of FBm B^H as $H \to 0$. Recall: the paths of B^H belong to $C^{H-\varepsilon}(\mathbb{R})$ for all $\varepsilon > 0$; hence the LGF belongs to $C^{-\varepsilon}(\mathbb{R})$ for every $\varepsilon > 0$.

Gaussian multiplicative chaos measure (GMC)

• Roughly speaking, GMC is a theory which defines rigorously random measures

$$M_{\gamma}(dy) = e^{\gamma X(y)} \sigma(dy),$$

where σ is a Radon measure on some metric space $(D, d), \gamma > 0$ is a parameter, and $X: D \to \mathbb{R}$ is a centred Gaussian field.

- Typically one constructs such measures from random fields X that are not defined as functions, so pointwise evaluations X(y) do not make sense (LGF is an important example
- The idea to construct a GMC measure is rather simple: define the measure as the limit as $\varepsilon \to 0$ of $C_{\varepsilon} e^{\gamma X_{\varepsilon}} \sigma(dx)$ where X_{ε} is a sequence converging to X, and C_{ε} is some normalisation sequence which ensures that the limit is non-trivial (i.e. we do not end up with the zero measure)

Gaussian multiplicative chaos measure (GMC)

• Roughly speaking, GMC is a theory which defines rigorously random measures

$$M_{\gamma}(dy) = e^{\gamma X(y)} \sigma(dy),$$

where σ is a Radon measure on some metric space $(D, d), \gamma > 0$ is a parameter, and $X: D \to \mathbb{R}$ is a centred Gaussian field.

- Typically one constructs such measures from random fields X that are not defined as functions, so pointwise evaluations X(y) do not make sense (LGF is an important example)
- The idea to construct a GMC measure is rather simple: define the measure as the limit as $\varepsilon \to 0$ of $C_{\varepsilon} e^{\gamma X_{\varepsilon}} \sigma(dx)$ where X_{ε} is a sequence converging to X, and C_{ε} is some normalisation sequence which ensures that the limit is non-trivial (i.e. we do not end up with the zero measure)

Gaussian multiplicative chaos measure (GMC)

• Roughly speaking, GMC is a theory which defines rigorously random measures

$$M_{\gamma}(dy) = e^{\gamma X(y)} \sigma(dy),$$

where σ is a Radon measure on some metric space $(D, d), \gamma > 0$ is a parameter, and $X: D \to \mathbb{R}$ is a centred Gaussian field.

- Typically one constructs such measures from random fields X that are not defined as functions, so pointwise evaluations X(y) do not make sense (LGF is an important example)
- The idea to construct a GMC measure is rather simple: define the measure as the limit as $\varepsilon \to 0$ of $C_{\varepsilon} e^{\gamma X_{\varepsilon}} \sigma(dx)$ where X_{ε} is a sequence converging to X, and C_{ε} is some normalisation sequence which ensures that the limit is non-trivial (i.e. we do not end up with the zero measure)

• Let θ be a smooth mollifier. Set $X_{\varepsilon} := X * \theta_{\varepsilon}$, where X has a covariance kernel of log-type, and $\theta_{\varepsilon} := \frac{1}{\varepsilon^n} \theta\left(\frac{\cdot}{\varepsilon}\right)$. It can be shown that the random measures

$$M_{\varepsilon,\gamma}(dy) = e^{\gamma X_{\varepsilon}(y) - rac{\gamma^2 \mathbb{E}[X_{\varepsilon}(y)^2]}{2}} \sigma(dy)$$

- ullet The random measure M_γ does not depend on the mollifier heta
- If $\sigma(dy) = f(y) dy$, with f > 0, the measure M_{γ} is different from 0 iff $\gamma < \sqrt{2n}$.
- The proof of this convergence is divided into two cases: $\gamma \in (0, \sqrt{n})$, the so-called L^2 -range, which is easier, and then $\gamma \in [\sqrt{n}, \sqrt{2n})$, which uses more refined techniques
- One could consider other, more general approximations of the field X rather than of the form $X * \theta_{\varepsilon}$ as well for the conclusion to hold

• Let θ be a smooth mollifier. Set $X_{\varepsilon} := X * \theta_{\varepsilon}$, where X has a covariance kernel of log-type, and $\theta_{\varepsilon} := \frac{1}{\varepsilon^n} \theta\left(\frac{\cdot}{\varepsilon}\right)$. It can be shown that the random measures

$$M_{\varepsilon,\gamma}(dy) = e^{\gamma X_{\varepsilon}(y) - rac{\gamma^2 \mathbb{E}[X_{\varepsilon}(y)^2]}{2}} \sigma(dy)$$

- ullet The random measure M_γ does not depend on the mollifier heta
- If $\sigma(dy) = f(y) dy$, with f > 0, the measure M_{γ} is different from 0 iff $\gamma < \sqrt{2n}$.
- The proof of this convergence is divided into two cases: $\gamma \in (0, \sqrt{n})$, the so-called L^2 -range, which is easier, and then $\gamma \in [\sqrt{n}, \sqrt{2n})$, which uses more refined techniques
- One could consider other, more general approximations of the field X rather than of the form $X * \theta_{\varepsilon}$ as well for the conclusion to hold

• Let θ be a smooth mollifier. Set $X_{\varepsilon} := X * \theta_{\varepsilon}$, where X has a covariance kernel of log-type, and $\theta_{\varepsilon} := \frac{1}{\varepsilon^n} \theta\left(\frac{\cdot}{\varepsilon}\right)$. It can be shown that the random measures

$$M_{arepsilon,\gamma}(dy) = e^{\gamma X_{arepsilon}(y) - rac{\gamma^2 \mathbb{E}[X_{arepsilon}(y)^2]}{2}} \sigma(dy)$$

- The random measure M_γ does not depend on the mollifier heta
- If $\sigma(dy) = f(y) dy$, with f > 0, the measure M_{γ} is different from 0 iff $\gamma < \sqrt{2n}$.
- The proof of this convergence is divided into two cases: $\gamma \in (0, \sqrt{n})$, the so-called L^2 -range, which is easier, and then $\gamma \in [\sqrt{n}, \sqrt{2n})$, which uses more refined techniques.
- One could consider other, more general approximations of the field X rather than of the form $X * \theta_{\varepsilon}$ as well for the conclusion to hold

• Let θ be a smooth mollifier. Set $X_{\varepsilon} := X * \theta_{\varepsilon}$, where X has a covariance kernel of log-type, and $\theta_{\varepsilon} := \frac{1}{\varepsilon^n} \theta\left(\frac{\cdot}{\varepsilon}\right)$. It can be shown that the random measures

$$M_{\varepsilon,\gamma}(dy) = e^{\gamma X_{\varepsilon}(y) - rac{\gamma^2 \mathbb{E}[X_{\varepsilon}(y)^2]}{2}} \sigma(dy)$$

- ullet The random measure M_γ does not depend on the mollifier heta
- If $\sigma(dy) = f(y) dy$, with f > 0, the measure M_{γ} is different from 0 iff $\gamma < \sqrt{2n}$.
- The proof of this convergence is divided into two cases: $\gamma \in (0, \sqrt{n})$, the so-called L^2 -range, which is easier, and then $\gamma \in [\sqrt{n}, \sqrt{2n})$, which uses more refined techniques.
- One could consider other, more general approximations of the field X rather than of the form $X * \theta_{\varepsilon}$ as well for the conclusion to hold

• Let θ be a smooth mollifier. Set $X_{\varepsilon} := X * \theta_{\varepsilon}$, where X has a covariance kernel of log-type, and $\theta_{\varepsilon} := \frac{1}{\varepsilon^n} \theta\left(\frac{\cdot}{\varepsilon}\right)$. It can be shown that the random measures

$$M_{\varepsilon,\gamma}(dy) = e^{\gamma X_{\varepsilon}(y) - \frac{\gamma^2 \mathbb{E}[X_{\varepsilon}(y)^2]}{2}} \sigma(dy)$$

- The random measure M_γ does not depend on the mollifier heta
- If $\sigma(dy) = f(y) dy$, with f > 0, the measure M_{γ} is different from 0 iff $\gamma < \sqrt{2n}$.
- The proof of this convergence is divided into two cases: $\gamma \in (0, \sqrt{n})$, the so-called L^2 -range, which is easier, and then $\gamma \in [\sqrt{n}, \sqrt{2n})$, which uses more refined techniques.
- One could consider other, more general approximations of the field X rather than of the form $X * \theta_{\varepsilon}$ as well for the conclusion to hold

GMC measure. Properties.

For $\gamma < \sqrt{2n}$, assume $\sigma(dx) = f(x) dx$, with f bounded.

- Moments of GMC measure associated to LGF: For any ball $B \subset D$ we have $\mathbb{E}[M_{\gamma}(B)^q] < +\infty$ iff $q \in (-\infty, \frac{2n}{\gamma^2})$. Compare this with moments of Gaussians (i.e. Fernique thm)!
- Multifractal behavior of M_γ: Assume that f is continuous. Then for all x and all q ∈ (-∞, ²ⁿ/_{γ²}) there exists some positive constant C_x = C_x(f, q, K) such that

$$\mathbb{E}[M_{\gamma}(B(x,r))^{q}] \stackrel{r \to 0}{\sim} C_{x} r^{\xi(q)},$$

where $\xi(q) = (n + \frac{\gamma^2}{2})q - \frac{\gamma^2 q^2}{2}$ is called the structure function of M_{γ} . Roughly speaking, the GMC measure is Hölder around each point.

GMC measure. Properties.

For $\gamma < \sqrt{2n}$, assume $\sigma(dx) = f(x) dx$, with f bounded.

- Moments of GMC measure associated to LGF: For any ball $B \subset D$ we have $\mathbb{E}[M_{\gamma}(B)^q] < +\infty$ iff $q \in (-\infty, \frac{2n}{\gamma^2})$. Compare this with moments of Gaussians (i.e. Fernique thm)!
- Multifractal behavior of M_{γ} : Assume that f is continuous. Then for all x and all $q \in (-\infty, \frac{2n}{\gamma^2})$ there exists some positive constant $C_x = C_x(f, q, K)$ such that

$$\mathbb{E}[M_{\gamma}(B(x,r))^{q}] \overset{r\to 0}{\sim} C_{x}r^{\xi(q)},$$

where $\xi(q) = (n + \frac{\gamma^2}{2})q - \frac{\gamma^2 q^2}{2}$ is called the structure function of M_{γ} . Roughly speaking, the GMC measure is Hölder around each point.

GMC measure. Properties.

For $\gamma < \sqrt{2n}$, assume $\sigma(dx) = f(x) dx$, with f bounded.

- Moments of GMC measure associated to LGF: For any ball $B \subset D$ we have $\mathbb{E}[M_{\gamma}(B)^q] < +\infty$ iff $q \in (-\infty, \frac{2n}{\gamma^2})$. Compare this with moments of Gaussians (i.e. Fernique thm)!
- Multifractal behavior of M_{γ} : Assume that f is continuous. Then for all x and all $q \in (-\infty, \frac{2n}{\gamma^2})$ there exists some positive constant $C_x = C_x(f, q, K)$ such that

$$\mathbb{E}[M_{\gamma}(B(x,r))^{q}] \stackrel{r\to 0}{\sim} C_{x}r^{\xi(q)},$$

where $\xi(q) = (n + \frac{\gamma^2}{2})q - \frac{\gamma^2 q^2}{2}$ is called the structure function of M_{γ} . Roughly speaking, the GMC measure is Hölder around each point.

References / recommended reading

General textbooks:

- Brownian Motion: An Introduction to Stochastic Processes. René L. Schilling.
- Gaussian Hilbert Spaces. Svante Janson.
- *Malliavin-laskenta: eli gaussisten prosessien derivointi*. Tommi Sottinen. Available freely on author's website.
- Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang.

Some more specific survey articles:

- Fractional Gaussian fields: a survey (2016). Asad Lodhia, Scott Sheffield, Xin Sun, Samuel S. Watson. In arXiv.
- Log-correlated Gaussian fields: an overview (2014). Bertrand Duplantier, Rémi Rhodes, Scott Sheffield, Vincent Vargas. In arXiv.
- Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity (2016). Rémi Rhodes, Vincent Vargas. In arXiv.

Thank you!