Geometry of quasiregular mappings and curves

Susanna Heikkilä

University of Helsinki

DOMAST seminar February 4, 2022

Outline

Quasiregular mappings

- Between Euclidean spaces
- Between Riemannian manifolds
- Properties

2 Riemannian and lower dimensional volume forms

Quasiregular curves

- Definition
- Examples
- Some results

Quasiregular mappings between Euclidean spaces

Definition

Let $n \ge 2$ and let $\Omega \subset \mathbb{R}^n$ be a domain. A mapping $f : \Omega \to \mathbb{R}^n$ is *K*-quasiregular for $K \ge 1$ if $f \in W^{1,n}_{\mathsf{loc}}(\Omega, \mathbb{R}^n)$ and

 $||Df||^n \leq K \det Df$ a.e. in Ω ,

where ||Df|| is the operator norm.

- The mapping f can be redefined in a set of measure zero so that it is made continuous.
- If f is a homeomorphism onto its image, then f is called quasiconformal.
- Every map $g \in W^{1,n}_{\mathsf{loc}}(\Omega,\mathbb{R}^n)$ satisfies det $Dg \leq ||Dg||^n$ a.e. in Ω .

Geometric interpretation

Let $f: \Omega \to \mathbb{R}^n$ be a non-constant *K*-quasiregular mapping. At almost every point $x \in \Omega$, the differential $(Df)_x$ behaves as follows:

In the picture, we have that

 $m_n(\tilde{B}) = ||(Df)_x||^n m_n(B)$ and $m_n((Df)_x B) = (\det(Df)_x)m_n(B)$.

Thus, the K-quasiregularity of f implies that $m_n(\tilde{B}) \leq Km_n((Df)_{\times}B)$.

Let S(n) denote the space of symmetric positive definite $n \times n$ -matrices having determinant equal to one. Given a domain $\Omega \subset \mathbb{R}^n$ and a bounded measurable mapping $G \colon \Omega \to S(n)$, the corresponding Beltrami system is defined as

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} G$$
 a.e. in Ω

for mappings f with non-negative Jacobian determinant.

Quasiregular mappings are solutions to Beltrami systems and vice versa.

If $G \equiv I_n$, then the corresponding Beltrami system reduces to the Cauchy-Riemann system

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} I_n$$
 a.e. in Ω .

Let S(n) denote the space of symmetric positive definite $n \times n$ -matrices having determinant equal to one. Given a domain $\Omega \subset \mathbb{R}^n$ and a bounded measurable mapping $G \colon \Omega \to S(n)$, the corresponding Beltrami system is defined as

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} G$$
 a.e. in Ω

for mappings f with non-negative Jacobian determinant.

Quasiregular mappings are solutions to Beltrami systems and vice versa.

If $G \equiv I_n$, then the corresponding Beltrami system reduces to the Cauchy-Riemann system

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} I_n$$
 a.e. in Ω .

Let S(n) denote the space of symmetric positive definite $n \times n$ -matrices having determinant equal to one. Given a domain $\Omega \subset \mathbb{R}^n$ and a bounded measurable mapping $G \colon \Omega \to S(n)$, the corresponding Beltrami system is defined as

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} G$$
 a.e. in Ω

for mappings f with non-negative Jacobian determinant.

Quasiregular mappings are solutions to Beltrami systems and vice versa.

If $G \equiv I_n$, then the corresponding Beltrami system reduces to the Cauchy-Riemann system

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} I_n$$
 a.e. in Ω .

Let S(n) denote the space of symmetric positive definite $n \times n$ -matrices having determinant equal to one. Given a domain $\Omega \subset \mathbb{R}^n$ and a bounded measurable mapping $G \colon \Omega \to S(n)$, the corresponding Beltrami system is defined as

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} G$$
 a.e. in Ω

for mappings f with non-negative Jacobian determinant.

Quasiregular mappings are solutions to Beltrami systems and vice versa.

If $G \equiv I_n$, then the corresponding Beltrami system reduces to the Cauchy-Riemann system

$$(Df)^T Df = (\det Df)^{\frac{2}{n}} I_n$$
 a.e. in Ω .

- Let $f: \Omega \to \mathbb{R}^n$ be *L*-Lipschitz continuous and assume that det $Df \ge C$ for some constant C > 0. Then $||Df||^n \le L^n \le \frac{L^n}{C} \det Df$.
- Let k be a positive integer. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping $(r, \varphi) \mapsto (r, k\varphi)$ in polar coordinates. For $(x, y) \neq 0$ we have that

$$(Df)_{(x,y)} = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & k \end{pmatrix} \begin{pmatrix} \cos\varphi & \sin\varphi\\ -1/r\sin\varphi & 1/r\cos\varphi \end{pmatrix}.$$

It follows that ||Df|| = k and det Df = k in $\mathbb{R}^2 \setminus \{0\}$. Thus, f is k-quasiregular.

• Let ℓ be a positive integer and let $g: \mathbb{R}^2 \times \mathbb{R}^\ell \to \mathbb{R}^2 \times \mathbb{R}^\ell$ be the mapping $g = f \times id_{\mathbb{R}^\ell}$. Then ||Dg|| = ||Df|| and det $Dg = \det Df$ in $(\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^\ell$. Hence g is $k^{\ell+1}$ -quasiregular.

- Let $f: \Omega \to \mathbb{R}^n$ be *L*-Lipschitz continuous and assume that det $Df \ge C$ for some constant C > 0. Then $||Df||^n \le L^n \le \frac{L^n}{C} \det Df$.
- Let k be a positive integer. Let f: ℝ² → ℝ² be the mapping (r, φ) → (r, kφ) in polar coordinates. For (x, y) ≠ 0 we have that

$$(Df)_{(x,y)} = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & k \end{pmatrix} \begin{pmatrix} \cos\varphi & \sin\varphi\\ -1/r\sin\varphi & 1/r\cos\varphi \end{pmatrix}.$$

It follows that ||Df|| = k and det Df = k in $\mathbb{R}^2 \setminus \{0\}$. Thus, f is k-quasiregular.

• Let ℓ be a positive integer and let $g: \mathbb{R}^2 \times \mathbb{R}^\ell \to \mathbb{R}^2 \times \mathbb{R}^\ell$ be the mapping $g = f \times id_{\mathbb{R}^\ell}$. Then ||Dg|| = ||Df|| and det $Dg = \det Df$ in $(\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^\ell$. Hence g is $k^{\ell+1}$ -quasiregular.

- Let $f: \Omega \to \mathbb{R}^n$ be *L*-Lipschitz continuous and assume that det $Df \ge C$ for some constant C > 0. Then $||Df||^n \le L^n \le \frac{L^n}{C} \det Df$.
- Let k be a positive integer. Let f: ℝ² → ℝ² be the mapping (r, φ) → (r, kφ) in polar coordinates. For (x, y) ≠ 0 we have that

$$(Df)_{(x,y)} = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & k \end{pmatrix} \begin{pmatrix} \cos\varphi & \sin\varphi\\ -1/r\sin\varphi & 1/r\cos\varphi \end{pmatrix}.$$

It follows that ||Df|| = k and det Df = k in $\mathbb{R}^2 \setminus \{0\}$. Thus, f is k-quasiregular.

• Let ℓ be a positive integer and let $g : \mathbb{R}^2 \times \mathbb{R}^\ell \to \mathbb{R}^2 \times \mathbb{R}^\ell$ be the mapping $g = f \times id_{\mathbb{R}^\ell}$. Then ||Dg|| = ||Df|| and det $Dg = \det Df$ in $(\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^\ell$. Hence g is $k^{\ell+1}$ -quasiregular.

Quasiregular mappings

Definition

A continuous mapping $f: M \to N$ between connected, oriented Riemannian *n*-manifolds is *K*-quasiregular if $f \in W^{1,n}_{loc}(M, N)$ and

 $||Df||^n \leq K \det Df$ a.e. in M.

Let $f: M \to N$ be a non-constant quasiregular mapping between connected, oriented Riemannian *n*-manifolds. Then

- f is discrete and open, i.e., the preimage of each point is a discrete set and the image of each open set is open,
- there exists p = p(n, K) > n for which $f \in W^{1,p}_{loc}(M, N)$,
- f is differentiable a.e. in M, and
- det Df > 0 a.e. in M.

Let $f: M \to N$ be a non-constant quasiregular mapping between connected, oriented Riemannian *n*-manifolds. Then

- f is discrete and open, i.e., the preimage of each point is a discrete set and the image of each open set is open,
- there exists p = p(n, K) > n for which $f \in W^{1,p}_{loc}(M, N)$,
- f is differentiable a.e. in M, and
- det Df > 0 a.e. in M.

Let $f: M \to N$ be a non-constant quasiregular mapping between connected, oriented Riemannian *n*-manifolds. Then

- f is discrete and open, i.e., the preimage of each point is a discrete set and the image of each open set is open,
- there exists p = p(n, K) > n for which $f \in W^{1,p}_{loc}(M, N)$,
- f is differentiable a.e. in M, and

• det Df > 0 a.e. in M.

Let $f: M \to N$ be a non-constant quasiregular mapping between connected, oriented Riemannian *n*-manifolds. Then

- f is discrete and open, i.e., the preimage of each point is a discrete set and the image of each open set is open,
- there exists p = p(n, K) > n for which $f \in W^{1,p}_{loc}(M, N)$,
- f is differentiable a.e. in M, and
- det Df > 0 a.e. in M.

- Smooth local isometries are 1-quasiregular. In particular, Riemannian covering maps are 1-quasiregular.
- Define $A: \mathbb{R}^2 \to \mathbb{S}^2$ as follows:

• Let $Z : \mathbb{R}^3 \to \mathbb{R}^3$ be the mapping $(x, y, z) \mapsto e^z A(x, y)$.

- Smooth local isometries are 1-quasiregular. In particular, Riemannian covering maps are 1-quasiregular.
- Define $A: \mathbb{R}^2 \to \mathbb{S}^2$ as follows:

• Let $Z : \mathbb{R}^3 \to \mathbb{R}^3$ be the mapping $(x, y, z) \mapsto e^z A(x, y)$.

- Smooth local isometries are 1-quasiregular. In particular, Riemannian covering maps are 1-quasiregular.
- Define $A: \mathbb{R}^2 \to \mathbb{S}^2$ as follows:

• Let $Z : \mathbb{R}^3 \to \mathbb{R}^3$ be the mapping $(x, y, z) \mapsto e^z A(x, y)$.

Riemannian volume forms

Definition

A smooth *n*-manifold is orientable if there exists a smooth pointwise non-vanishing *n*-form $\omega \in \Omega^n(M)$. Such a form ω is called an orientation form on M and any basis v_1, \ldots, v_n of a tangent space T_xM , $x \in M$, which satisfies $\omega_x(v_1, \ldots, v_n) > 0$ is called a positively oriented basis.

Definition

Let M be an oriented Riemannian n-manifold and let ω be an orientation form on M. If $\omega_x(v_1, \ldots, v_n) = 1$, for every $x \in M$ and for every positively oriented orthonormal basis v_1, \ldots, v_n of $T_x M$, then we say that ω is the Riemannian volume form on M and we denote $\omega = \operatorname{vol}_M$.

Proposition

The Riemannian volume form vol_M exists for each oriented Riemannian manifold M.

Riemannian volume forms

Definition

A smooth *n*-manifold is orientable if there exists a smooth pointwise non-vanishing *n*-form $\omega \in \Omega^n(M)$. Such a form ω is called an orientation form on M and any basis v_1, \ldots, v_n of a tangent space T_xM , $x \in M$, which satisfies $\omega_x(v_1, \ldots, v_n) > 0$ is called a positively oriented basis.

Definition

Let M be an oriented Riemannian n-manifold and let ω be an orientation form on M. If $\omega_x(v_1, \ldots, v_n) = 1$, for every $x \in M$ and for every positively oriented orthonormal basis v_1, \ldots, v_n of $T_x M$, then we say that ω is the Riemannian volume form on M and we denote $\omega = \operatorname{vol}_M$.

Proposition

The Riemannian volume form vol_M exists for each oriented Riemannian manifold M.

Riemannian volume forms

Definition

A smooth *n*-manifold is orientable if there exists a smooth pointwise non-vanishing *n*-form $\omega \in \Omega^n(M)$. Such a form ω is called an orientation form on M and any basis v_1, \ldots, v_n of a tangent space T_xM , $x \in M$, which satisfies $\omega_x(v_1, \ldots, v_n) > 0$ is called a positively oriented basis.

Definition

Let M be an oriented Riemannian n-manifold and let ω be an orientation form on M. If $\omega_x(v_1, \ldots, v_n) = 1$, for every $x \in M$ and for every positively oriented orthonormal basis v_1, \ldots, v_n of $T_x M$, then we say that ω is the Riemannian volume form on M and we denote $\omega = \operatorname{vol}_M$.

Proposition

The Riemannian volume form vol_M exists for each oriented Riemannian manifold M.

Let *M* and *N* be connected, oriented Riemannian *n*-manifolds and let $f: M \to N$ be quasiregular. Then $||Df||^n \leq K \det Df$ a.e. in *M*.

...BUT! How is det Df formally defined?

For a.e. every $x \in M$, we have that $(Df)_x$ is a linear map $T_x M \to T_{f(x)}N$. Let v_1, \ldots, v_n and w_1, \ldots, w_n be positively oriented orthonormal bases of $T_x M$ and $T_{f(x)}N$, respectively. Then $(Df)_x$ has a matrix representation, denoted A_x , with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_n . Now

$$\det(Df)_{\times} = \det A_{\times}.$$

Defining det *Df* pointwise a.e. as above yields that

 $f^* \operatorname{vol}_N = (\det Df) \operatorname{vol}_M$.

Let *M* and *N* be connected, oriented Riemannian *n*-manifolds and let $f: M \to N$ be quasiregular. Then $||Df||^n \leq K \det Df$ a.e. in *M*.

...BUT! How is det Df formally defined?

For a.e. every $x \in M$, we have that $(Df)_x$ is a linear map $T_x M \to T_{f(x)}N$. Let v_1, \ldots, v_n and w_1, \ldots, w_n be positively oriented orthonormal bases of $T_x M$ and $T_{f(x)}N$, respectively. Then $(Df)_x$ has a matrix representation, denoted A_x , with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_n . Now

$$\det(Df)_{\times} = \det A_{\times}.$$

Defining det *Df* pointwise a.e. as above yields that

 $f^* \operatorname{vol}_N = (\det Df) \operatorname{vol}_M$.

Let *M* and *N* be connected, oriented Riemannian *n*-manifolds and let $f: M \to N$ be quasiregular. Then $||Df||^n \leq K \det Df$ a.e. in *M*.

...BUT! How is det Df formally defined?

For a.e. every $x \in M$, we have that $(Df)_x$ is a linear map $T_x M \to T_{f(x)} N$. Let v_1, \ldots, v_n and w_1, \ldots, w_n be positively oriented orthonormal bases of $T_x M$ and $T_{f(x)} N$, respectively. Then $(Df)_x$ has a matrix representation, denoted A_x , with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_n . Now

$$\det(Df)_{x} = \det A_{x}.$$

Defining det Df pointwise a.e. as above yields that

 $f^* \operatorname{vol}_N = (\det Df) \operatorname{vol}_M$.

Let *M* and *N* be connected, oriented Riemannian *n*-manifolds and let $f: M \to N$ be quasiregular. Then $||Df||^n \leq K \det Df$ a.e. in *M*.

...BUT! How is det Df formally defined?

For a.e. every $x \in M$, we have that $(Df)_x$ is a linear map $T_x M \to T_{f(x)} N$. Let v_1, \ldots, v_n and w_1, \ldots, w_n be positively oriented orthonormal bases of $T_x M$ and $T_{f(x)} N$, respectively. Then $(Df)_x$ has a matrix representation, denoted A_x , with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_n . Now

$$\det(Df)_{x} = \det A_{x}.$$

Defining det Df pointwise a.e. as above yields that

$$f^* \operatorname{vol}_N = (\det Df) \operatorname{vol}_M$$
.

The forms $dx \wedge dy$, $3 dy \wedge dz$, and $e^x dy \wedge dz$ are examples of smooth pointwise non-vanishing 2-forms on \mathbb{R}^3 .

Definition

- $d(dx \wedge dy) = 0$, so $dx \wedge dy$ is a 2-volume form on \mathbb{R}^3
- $d(3 dy \wedge dz) = 0$, so $3 dy \wedge dz$ is a 2-volume form on \mathbb{R}^3
- $d(e^{x} dy \wedge dz) = e^{x} dx \wedge dy \wedge dz$, so $e^{x} dy \wedge dz$ is not a 2-volume form on \mathbb{R}^{3}

The forms $dx \wedge dy$, $3 dy \wedge dz$, and $e^x dy \wedge dz$ are examples of smooth pointwise non-vanishing 2-forms on \mathbb{R}^3 .

Definition

- $d(dx \wedge dy) = 0$, so $dx \wedge dy$ is a 2-volume form on \mathbb{R}^3
- $d(3 dy \wedge dz) = 0$, so $3 dy \wedge dz$ is a 2-volume form on \mathbb{R}^3
- $d(e^{x} dy \wedge dz) = e^{x} dx \wedge dy \wedge dz$, so $e^{x} dy \wedge dz$ is not a 2-volume form on \mathbb{R}^{3}

The forms $dx \wedge dy$, $3 dy \wedge dz$, and $e^x dy \wedge dz$ are examples of smooth pointwise non-vanishing 2-forms on \mathbb{R}^3 .

Definition

- $d(dx \wedge dy) = 0$, so $dx \wedge dy$ is a 2-volume form on \mathbb{R}^3
- $d(3 dy \wedge dz) = 0$, so $3 dy \wedge dz$ is a 2-volume form on \mathbb{R}^3
- $d(e^{x} dy \wedge dz) = e^{x} dx \wedge dy \wedge dz$, so $e^{x} dy \wedge dz$ is not a 2-volume form on \mathbb{R}^{3}

The forms $dx \wedge dy$, $3 dy \wedge dz$, and $e^x dy \wedge dz$ are examples of smooth pointwise non-vanishing 2-forms on \mathbb{R}^3 .

Definition

A smooth *n*-form $\omega \in \Omega^n(N)$ on a Riemannian *m*-manifold *N*, where $n \leq m$, is an *n*-volume form if ω is pointwise non-vanishing and $d\omega = 0$, where *d* denotes the exterior derivative $d: \Omega^n(N) \to \Omega^{n+1}(N)$.

- $d(dx \wedge dy) = 0$, so $dx \wedge dy$ is a 2-volume form on \mathbb{R}^3
- $d(3 \, dy \wedge dz) = 0$, so $3 \, dy \wedge dz$ is a 2-volume form on \mathbb{R}^3

• $d(e^{\times} dy \wedge dz) = e^{\times} dx \wedge dy \wedge dz$, so $e^{\times} dy \wedge dz$ is not a 2-volume form on \mathbb{R}^3

The forms $dx \wedge dy$, $3 dy \wedge dz$, and $e^x dy \wedge dz$ are examples of smooth pointwise non-vanishing 2-forms on \mathbb{R}^3 .

Definition

- $d(dx \wedge dy) = 0$, so $dx \wedge dy$ is a 2-volume form on \mathbb{R}^3
- $d(3 \, dy \wedge dz) = 0$, so $3 \, dy \wedge dz$ is a 2-volume form on \mathbb{R}^3
- $d(e^{x} dy \wedge dz) = e^{x} dx \wedge dy \wedge dz$, so $e^{x} dy \wedge dz$ is not a 2-volume form on \mathbb{R}^{3}

Quasiregular curves

Definition

A continuous mapping $F: M \to N$ between connected, oriented Riemannian manifolds, $2 \le n = \dim M \le \dim N$, is a K-quasiregular ω -curve for $K \ge 1$ with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if $F \in W^{1,n}_{\text{loc}}(M, N)$ and

 $(||\omega|| \circ F) ||DF||^n \le K(\star F^*\omega)$ a.e. in M.

Here $||\omega||$ is the comass norm given pointwise by

$$||\omega_x|| = \max\{\omega_x(v_1, \dots, v_n) \colon v_1, \dots, v_n \in T_x N \text{ unit vectors}\}$$

and the function $\star F^*\omega$ is determined by the equation

 $F^*\omega = (\star F^*\omega) \operatorname{vol}_M.$

Quasiregular curves

Definition

A continuous mapping $F: M \to N$ between connected, oriented Riemannian manifolds, $2 \le n = \dim M \le \dim N$, is a K-quasiregular ω -curve for $K \ge 1$ with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if $F \in W^{1,n}_{loc}(M, N)$ and

 $(||\omega|| \circ F) ||DF||^n \le K(\star F^*\omega)$ a.e. in M.

- When n = m and $\omega = \text{vol}_N$, the definition reduces to the definition of quasiregular mappings.
- Every $G \in W^{1,n}_{\mathsf{loc}}(M,N)$ satisfies $\star G^* \omega \leq (||\omega|| \circ G) ||DG||^n$ a.e. in M.

Let $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be a K-quasiregular ω -curve. Write $F = (f_1, f_2, f_3)$. Let $F' : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping $F' = (f_1, f_2)$.

Then $||DF|| \ge ||DF'||$ and $\star F^* \omega = \det DF'$.

Let $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be a *K*-quasiregular ω -curve. Write $F = (f_1, f_2, f_3)$. Let $F' : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping $F' = (f_1, f_2)$.

How $(DF)_p$ maps the unit ball:

Let $\lambda_1 \geq \lambda_2$ be the singular values of $(DF)_p$. Then $\mathcal{H}^2(\tilde{B}) = \lambda_1^2 \mathcal{H}^2(B) = ||DF||^2 \mathcal{H}^2(B)$ and $\mathcal{H}^2((DF)_p B) = \lambda_1 \lambda_2 \mathcal{H}^2(B)$. In general, $\lambda_1 \lambda_2 \neq \star F^* \omega$.

Let $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be a K-quasiregular ω -curve. Write $F = (f_1, f_2, f_3)$. Let $F' : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping $F' = (f_1, f_2)$.

How $(DF')_p$ maps the unit ball:

Let $\mu_1 \ge \mu_2$ be the singular values of $(DF')_p$. Then $\mathcal{H}^2((DF')_pB) = \mu_1\mu_2\mathcal{H}^2(B) = (\det DF')\mathcal{H}^2(B) = (\star F^*\omega)\mathcal{H}^2(B).$

Let $\omega = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be a *K*-quasiregular ω -curve. Write $F = (f_1, f_2, f_3)$. Let $F' : \mathbb{R}^2 \to \mathbb{R}^2$ be the mapping $F' = (f_1, f_2)$. Comparing the two:

Now the inequality $||DF||^2 \leq K(\star F^*\omega)$ yields that $\mathcal{H}^2(\hat{B}) \leq K\mathcal{H}^2((DF')_pB)$.

Susanna Heikkilä (UH)

- Let also M be a connected, oriented Riemannian *n*-manifold and let $N = N_1 \times \cdots \times N_k$ be a Riemannian product of oriented Riemannian *n*-manifolds. Let also $f_i : M \to N_i$ be quasiregular mappings. Then $F = (f_1, \ldots, f_k) : M \to N$ is a quasiregular vol[×]_N-curve, where vol[×]_N is the *n*-volume form obtained from the product structure of N.
- Let $\Omega \subset \mathbb{C}$ be a domain and let $F : \Omega \to \mathbb{C}^k$ be a holomorphic curve. Then F is a quasiregular ω_{sym} -curve, where ω_{sym} is the standard symplectic form on \mathbb{C}^k .
- Fix $y \in \mathbb{R}^n$ and define $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$ by $x \mapsto (x, x \cdot y)$. Then F is a quasiregular $dx_1 \wedge \cdots \wedge dx_n$ -curve.
- Let $p: \mathbb{R}^{n+1} \to T^{n+1}$ be the standard (Riemannian) covering map and let $\omega = \pi_1^* \operatorname{vol}_{\mathbb{S}^1} \land \cdots \land \pi_n^* \operatorname{vol}_{\mathbb{S}^1}$, where each $\pi_i: T^{n+1} \to \mathbb{S}^1$ is the projection. Then $p \circ F: \mathbb{R}^n \to T^{n+1}$ is a quasiregular ω -curve.

- Let also M be a connected, oriented Riemannian *n*-manifold and let $N = N_1 \times \cdots \times N_k$ be a Riemannian product of oriented Riemannian *n*-manifolds. Let also $f_i : M \to N_i$ be quasiregular mappings. Then $F = (f_1, \ldots, f_k) : M \to N$ is a quasiregular vol[×]_N-curve, where vol[×]_N is the *n*-volume form obtained from the product structure of N.
- Let $\Omega \subset \mathbb{C}$ be a domain and let $F : \Omega \to \mathbb{C}^k$ be a holomorphic curve. Then F is a quasiregular ω_{sym} -curve, where ω_{sym} is the standard symplectic form on \mathbb{C}^k .
- Fix $y \in \mathbb{R}^n$ and define $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$ by $x \mapsto (x, x \cdot y)$. Then F is a quasiregular $dx_1 \wedge \cdots \wedge dx_n$ -curve.
- Let $p: \mathbb{R}^{n+1} \to T^{n+1}$ be the standard (Riemannian) covering map and let $\omega = \pi_1^* \operatorname{vol}_{\mathbb{S}^1} \land \cdots \land \pi_n^* \operatorname{vol}_{\mathbb{S}^1}$, where each $\pi_i: T^{n+1} \to \mathbb{S}^1$ is the projection. Then $p \circ F: \mathbb{R}^n \to T^{n+1}$ is a quasiregular ω -curve.

- Let also M be a connected, oriented Riemannian *n*-manifold and let $N = N_1 \times \cdots \times N_k$ be a Riemannian product of oriented Riemannian *n*-manifolds. Let also $f_i : M \to N_i$ be quasiregular mappings. Then $F = (f_1, \ldots, f_k) : M \to N$ is a quasiregular vol[×]_N-curve, where vol[×]_N is the *n*-volume form obtained from the product structure of N.
- Let $\Omega \subset \mathbb{C}$ be a domain and let $F : \Omega \to \mathbb{C}^k$ be a holomorphic curve. Then F is a quasiregular ω_{sym} -curve, where ω_{sym} is the standard symplectic form on \mathbb{C}^k .
- Fix $y \in \mathbb{R}^n$ and define $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$ by $x \mapsto (x, x \cdot y)$. Then F is a quasiregular $dx_1 \wedge \cdots \wedge dx_n$ -curve.
- Let $p: \mathbb{R}^{n+1} \to T^{n+1}$ be the standard (Riemannian) covering map and let $\omega = \pi_1^* \operatorname{vol}_{\mathbb{S}^1} \land \cdots \land \pi_n^* \operatorname{vol}_{\mathbb{S}^1}$, where each $\pi_i: T^{n+1} \to \mathbb{S}^1$ is the projection. Then $p \circ F: \mathbb{R}^n \to T^{n+1}$ is a quasiregular ω -curve.

- Let also M be a connected, oriented Riemannian *n*-manifold and let $N = N_1 \times \cdots \times N_k$ be a Riemannian product of oriented Riemannian *n*-manifolds. Let also $f_i : M \to N_i$ be quasiregular mappings. Then $F = (f_1, \ldots, f_k) : M \to N$ is a quasiregular vol[×]_N-curve, where vol[×]_N is the *n*-volume form obtained from the product structure of N.
- Let $\Omega \subset \mathbb{C}$ be a domain and let $F : \Omega \to \mathbb{C}^k$ be a holomorphic curve. Then F is a quasiregular ω_{sym} -curve, where ω_{sym} is the standard symplectic form on \mathbb{C}^k .
- Fix $y \in \mathbb{R}^n$ and define $F : \mathbb{R}^n \to \mathbb{R}^{n+1}$ by $x \mapsto (x, x \cdot y)$. Then F is a quasiregular $dx_1 \wedge \cdots \wedge dx_n$ -curve.
- Let $p: \mathbb{R}^{n+1} \to T^{n+1}$ be the standard (Riemannian) covering map and let $\omega = \pi_1^* \operatorname{vol}_{\mathbb{S}^1} \wedge \cdots \wedge \pi_n^* \operatorname{vol}_{\mathbb{S}^1}$, where each $\pi_i: T^{n+1} \to \mathbb{S}^1$ is the projection. Then $p \circ F: \mathbb{R}^n \to T^{n+1}$ is a quasiregular ω -curve.

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $(x, y) \mapsto (y, x, -2x)$. Let $\omega_1 = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and $\omega_2 = dx \wedge dy + dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

Then $||DF|| = \sqrt{5}$, $\star F^* \omega_1 = -1$, and $\star F^* \omega_2 = 1$. We also have that $||\omega_1|| = 1$ and $||\omega_2|| = \sqrt{2}$.

We want to know if there exists $K_i \ge 1$ satisfying

$$(||\omega_i|| \circ F) ||DF||^2 \le K_i(\star F^* \omega_i)$$

for i = 1, 2.

Since $\star F^*\omega_1 < 0$, no suitable K_1 exists. For K_2 we can choose $K_2 = 5\sqrt{2}$.

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $(x, y) \mapsto (y, x, -2x)$. Let $\omega_1 = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and $\omega_2 = dx \wedge dy + dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

Then $||DF|| = \sqrt{5}$, $\star F^* \omega_1 = -1$, and $\star F^* \omega_2 = 1$. We also have that $||\omega_1|| = 1$ and $||\omega_2|| = \sqrt{2}$.

We want to know if there exists $K_i \ge 1$ satisfying

$$(||\omega_i|| \circ F) ||DF||^2 \leq K_i(\star F^*\omega_i)$$

for i = 1, 2.

Since $\star F^*\omega_1 < 0$, no suitable K_1 exists. For K_2 we can choose $K_2 = 5\sqrt{2}$.

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $(x, y) \mapsto (y, x, -2x)$. Let $\omega_1 = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and $\omega_2 = dx \wedge dy + dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

Then $||DF|| = \sqrt{5}$, $\star F^* \omega_1 = -1$, and $\star F^* \omega_2 = 1$. We also have that $||\omega_1|| = 1$ and $||\omega_2|| = \sqrt{2}$.

We want to know if there exists $K_i \ge 1$ satisfying

$$\left(\left|\left|\omega_{i}\right|\right|\circ F\right)\left|\left|DF\right|\right|^{2}\leq K_{i}(\star F^{*}\omega_{i})$$

for i = 1, 2.

Since $\star F^* \omega_1 < 0$, no suitable K_1 exists. For K_2 we can choose $K_2 = 5\sqrt{2}$.

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the mapping $(x, y) \mapsto (y, x, -2x)$. Let $\omega_1 = dx \wedge dy \in \Omega^2(\mathbb{R}^3)$ and $\omega_2 = dx \wedge dy + dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

Then $||DF|| = \sqrt{5}$, $\star F^* \omega_1 = -1$, and $\star F^* \omega_2 = 1$. We also have that $||\omega_1|| = 1$ and $||\omega_2|| = \sqrt{2}$.

We want to know if there exists $K_i \ge 1$ satisfying

$$\left(\left|\left|\omega_{i}\right|\right|\circ F\right)\left|\left|DF\right|\right|^{2}\leq K_{i}(\star F^{*}\omega_{i})$$

for i = 1, 2.

Since $\star F^* \omega_1 < 0$, no suitable K_1 exists. For K_2 we can choose $K_2 = 5\sqrt{2}$.

- Open?
- Discrete?

- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?

- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?

- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^* \omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^* \omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{\text{loc}}(M,N)$ for some p = p(n,K) > n?
- Differentiable a.e.?
- $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.?
- $\star F^*\omega > 0$ a.e.?

Let $F: M \to N$ be a non-constant *K*-quasiregular ω -curve between connected, oriented Riemannian manifolds with $n = \dim M < \dim N$.

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.?

• $\star F^*\omega > 0$ a.e.?

Let $F: M \to N$ be a non-constant *K*-quasiregular ω -curve between connected, oriented Riemannian manifolds with $n = \dim M < \dim N$.

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.? Yes!

• $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.? Yes!
- $\star F^*\omega > 0$ a.e.?

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.? Yes!
- $\star F^*\omega > 0$ a.e.?
 - ► In general, no.

- Open? No.
- Discrete?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!
- $F \in W^{1,p}_{loc}(M,N)$ for some p = p(n,K) > n? Yes!
- Differentiable a.e.? Yes!
- $\star F^*\omega > 0$ a.e.?
 - ► In general, no.
 - If $n \ge 3$, N is a product manifold, K is close enough to one, and $\omega = \operatorname{vol}_N^{\times}$, then yes!

Thank you!