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Quasiregular mappings between Euclidean spaces

Definition
Let n ≥ 2 and let Ω ⊂ Rn be a domain. A mapping f : Ω → Rn is K -quasiregular for K ≥ 1 if
f ∈ W 1,n

loc (Ω,R
n) and

||Df ||n ≤ K detDf a.e. in Ω,

where ||Df || is the operator norm.

The mapping f can be redefined in a set of measure zero so that it is made continuous.
If f is a homeomorphism onto its image, then f is called quasiconformal.
Every map g ∈ W 1,n

loc (Ω,R
n) satisfies detDg ≤ ||Dg ||n a.e. in Ω.
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Geometric interpretation
Let f : Ω → Rn be a non-constant K -quasiregular mapping. At almost every point x ∈ Ω, the
differential (Df )x behaves as follows:

In the picture, we have that

mn(B̃) = ||(Df )x ||n mn(B) and mn((Df )xB) = (det(Df )x)mn(B).

Thus, the K -quasiregularity of f implies that mn(B̃) ≤ Kmn((Df )xB).
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Connection to non-linear PDEs
Let S(n) denote the space of symmetric positive definite n × n-matrices having determinant
equal to one. Given a domain Ω ⊂ Rn and a bounded measurable mapping G : Ω → S(n), the
corresponding Beltrami system is defined as

(Df )TDf = (detDf )
2
nG a.e. in Ω

for mappings f with non-negative Jacobian determinant.

Quasiregular mappings are solutions to Beltrami systems and vice versa.

If G ≡ In, then the corresponding Beltrami system reduces to the Cauchy-Riemann system

(Df )TDf = (detDf )
2
n In a.e. in Ω.

For n = 2, holomorphic mappings are solutions to the Cauchy-Riemann system and hence
quasiregular.
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Examples

Let f : Ω → Rn be L-Lipschitz continuous and assume that detDf ≥ C for some constant
C > 0. Then ||Df ||n ≤ Ln ≤ Ln

C detDf .
Let k be a positive integer. Let f : R2 → R2 be the mapping (r , φ) 7→ (r , kφ) in polar
coordinates. For (x , y) ̸= 0 we have that

(Df )(x ,y) =

(
cosφ −r sinφ
sinφ r cosφ

)(
1 0
0 k

)(
cosφ sinφ

−1/r sinφ 1/r cosφ

)
.

It follows that ||Df || = k and detDf = k in R2 \ {0}. Thus, f is k-quasiregular.
Let ℓ be a positive integer and let g : R2 × Rℓ → R2 × Rℓ be the mapping g = f × idRℓ .
Then ||Dg || = ||Df || and detDg = detDf in (R2 \ {0})× Rℓ. Hence g is
kℓ+1-quasiregular.
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Quasiregular mappings

Definition
A continuous mapping f : M → N between connected, oriented Riemannian n-manifolds is
K -quasiregular if f ∈ W 1,n

loc (M,N) and

||Df ||n ≤ K detDf a.e. in M.
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Classical results for quasiregular mappings

Let f : M → N be a non-constant quasiregular mapping between connected, oriented
Riemannian n-manifolds. Then

f is discrete and open, i.e., the preimage of each point is a discrete set and the image of
each open set is open,
there exists p = p(n,K ) > n for which f ∈ W 1,p

loc (M,N),
f is differentiable a.e. in M, and
detDf > 0 a.e. in M.
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Examples

Smooth local isometries are 1-quasiregular. In particular, Riemannian covering maps are
1-quasiregular.
Define A : R2 → S2 as follows:

Let Z : R3 → R3 be the mapping (x , y , z) 7→ ezA(x , y).
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Riemannian volume forms

Definition
A smooth n-manifold is orientable if there exists a smooth pointwise non-vanishing n-form
ω ∈ Ωn(M). Such a form ω is called an orientation form on M and any basis v1, . . . , vn of a
tangent space TxM, x ∈ M, which satisfies ωx(v1, . . . , vn) > 0 is called a positively oriented
basis.

Definition
Let M be an oriented Riemannian n-manifold and let ω be an orientation form on M. If
ωx(v1, . . . , vn) = 1, for every x ∈ M and for every positively oriented orthonormal basis
v1, . . . , vn of TxM, then we say that ω is the Riemannian volume form on M and we denote
ω = volM .

Proposition
The Riemannian volume form volM exists for each oriented Riemannian manifold M.
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Jacobian determinant on Riemannian manifolds

Let M and N be connected, oriented Riemannian n-manifolds and let f : M → N be
quasiregular. Then ||Df ||n ≤ K detDf a.e. in M.

...BUT! How is detDf formally defined?

For a.e. every x ∈ M, we have that (Df )x is a linear map TxM → Tf (x)N. Let v1, . . . , vn and
w1, . . . ,wn be positively oriented orthonormal bases of TxM and Tf (x)N, respectively. Then
(Df )x has a matrix representation, denoted Ax , with respect to the bases v1, . . . , vn and
w1, . . . ,wn. Now

det(Df )x = detAx .

Defining detDf pointwise a.e. as above yields that

f ∗ volN = (detDf ) volM .
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Lower dimensional volume forms

The forms dx ∧ dy , 3 dy ∧ dz , and ex dy ∧ dz are examples of smooth pointwise non-vanishing
2-forms on R3.

Definition
A smooth n-form ω ∈ Ωn(N) on a Riemannian m-manifold N, where n ≤ m, is an n-volume
form if ω is pointwise non-vanishing and dω = 0, where d denotes the exterior derivative
d : Ωn(N) → Ωn+1(N).

d(dx ∧ dy) = 0, so dx ∧ dy is a 2-volume form on R3

d(3 dy ∧ dz) = 0, so 3 dy ∧ dz is a 2-volume form on R3

d(ex dy ∧ dz) = ex dx ∧ dy ∧ dz , so ex dy ∧ dz is not a 2-volume form on R3
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Quasiregular curves

Definition
A continuous mapping F : M → N between connected, oriented Riemannian manifolds,
2 ≤ n = dimM ≤ dimN, is a K -quasiregular ω-curve for K ≥ 1 with respect to an n-volume
form ω ∈ Ωn(N) if F ∈ W 1,n

loc (M,N) and

(||ω|| ◦ F ) ||DF ||n ≤ K (⋆F ∗ω) a.e. in M.

Here ||ω|| is the comass norm given pointwise by

||ωx || = max{ωx(v1, . . . , vn) : v1, . . . , vn ∈ TxN unit vectors}

and the function ⋆F ∗ω is determined by the equation

F ∗ω = (⋆F ∗ω) volM .
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Quasiregular curves

Definition
A continuous mapping F : M → N between connected, oriented Riemannian manifolds,
2 ≤ n = dimM ≤ dimN, is a K -quasiregular ω-curve for K ≥ 1 with respect to an n-volume
form ω ∈ Ωn(N) if F ∈ W 1,n

loc (M,N) and

(||ω|| ◦ F ) ||DF ||n ≤ K (⋆F ∗ω) a.e. in M.

When n = m and ω = volN , the definition reduces to the definition of quasiregular
mappings.
Every G ∈ W 1,n

loc (M,N) satisfies ⋆G ∗ω ≤ (||ω|| ◦ G ) ||DG ||n a.e. in M.
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An example and its geometric interpretation
Let ω = dx ∧ dy ∈ Ω2(R3) and let F : R2 → R3 be a K -quasiregular ω-curve. Write
F = (f1, f2, f3). Let F ′ : R2 → R2 be the mapping F ′ = (f1, f2).
Then ||DF || ≥ ||DF ′|| and ⋆F ∗ω = detDF ′.
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F = (f1, f2, f3). Let F ′ : R2 → R2 be the mapping F ′ = (f1, f2).
How (DF )p maps the unit ball:

Let λ1 ≥ λ2 be the singular values of (DF )p. Then H2(B̃) = λ2
1H2(B) = ||DF ||2 H2(B) and

H2((DF )pB) = λ1λ2H2(B). In general, λ1λ2 ̸= ⋆F ∗ω.
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An example and its geometric interpretation
Let ω = dx ∧ dy ∈ Ω2(R3) and let F : R2 → R3 be a K -quasiregular ω-curve. Write
F = (f1, f2, f3). Let F ′ : R2 → R2 be the mapping F ′ = (f1, f2).
Comparing the two:

Now the inequality ||DF ||2 ≤ K (⋆F ∗ω) yields that H2(B̂) ≤ KH2((DF ′)pB).
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Examples

Let also M be a connected, oriented Riemannian n-manifold and let N = N1 × · · · ×Nk be
a Riemannian product of oriented Riemannian n-manifolds. Let also fi : M → Ni be
quasiregular mappings. Then F = (f1, . . . , fk) : M → N is a quasiregular vol×N -curve, where
vol×N is the n-volume form obtained from the product structure of N.
Let Ω ⊂ C be a domain and let F : Ω → Ck be a holomorphic curve. Then F is a
quasiregular ωsym-curve, where ωsym is the standard symplectic form on Ck .
Fix y ∈ Rn and define F : Rn → Rn+1 by x 7→ (x , x · y). Then F is a quasiregular
dx1 ∧ · · · ∧ dxn-curve.
Let p : Rn+1 → T n+1 be the standard (Riemannian) covering map and let
ω = π∗

1 volS1 ∧ · · · ∧ π∗
n volS1 , where each πi : T

n+1 → S1 is the projection. Then
p ◦ F : Rn → T n+1 is a quasiregular ω-curve.

Susanna Heikkilä (UH) QR maps and curves Feb 4, 2022 15 / 18



Examples

Let also M be a connected, oriented Riemannian n-manifold and let N = N1 × · · · ×Nk be
a Riemannian product of oriented Riemannian n-manifolds. Let also fi : M → Ni be
quasiregular mappings. Then F = (f1, . . . , fk) : M → N is a quasiregular vol×N -curve, where
vol×N is the n-volume form obtained from the product structure of N.
Let Ω ⊂ C be a domain and let F : Ω → Ck be a holomorphic curve. Then F is a
quasiregular ωsym-curve, where ωsym is the standard symplectic form on Ck .
Fix y ∈ Rn and define F : Rn → Rn+1 by x 7→ (x , x · y). Then F is a quasiregular
dx1 ∧ · · · ∧ dxn-curve.
Let p : Rn+1 → T n+1 be the standard (Riemannian) covering map and let
ω = π∗

1 volS1 ∧ · · · ∧ π∗
n volS1 , where each πi : T

n+1 → S1 is the projection. Then
p ◦ F : Rn → T n+1 is a quasiregular ω-curve.

Susanna Heikkilä (UH) QR maps and curves Feb 4, 2022 15 / 18



Examples

Let also M be a connected, oriented Riemannian n-manifold and let N = N1 × · · · ×Nk be
a Riemannian product of oriented Riemannian n-manifolds. Let also fi : M → Ni be
quasiregular mappings. Then F = (f1, . . . , fk) : M → N is a quasiregular vol×N -curve, where
vol×N is the n-volume form obtained from the product structure of N.
Let Ω ⊂ C be a domain and let F : Ω → Ck be a holomorphic curve. Then F is a
quasiregular ωsym-curve, where ωsym is the standard symplectic form on Ck .
Fix y ∈ Rn and define F : Rn → Rn+1 by x 7→ (x , x · y). Then F is a quasiregular
dx1 ∧ · · · ∧ dxn-curve.
Let p : Rn+1 → T n+1 be the standard (Riemannian) covering map and let
ω = π∗

1 volS1 ∧ · · · ∧ π∗
n volS1 , where each πi : T

n+1 → S1 is the projection. Then
p ◦ F : Rn → T n+1 is a quasiregular ω-curve.

Susanna Heikkilä (UH) QR maps and curves Feb 4, 2022 15 / 18



Examples

Let also M be a connected, oriented Riemannian n-manifold and let N = N1 × · · · ×Nk be
a Riemannian product of oriented Riemannian n-manifolds. Let also fi : M → Ni be
quasiregular mappings. Then F = (f1, . . . , fk) : M → N is a quasiregular vol×N -curve, where
vol×N is the n-volume form obtained from the product structure of N.
Let Ω ⊂ C be a domain and let F : Ω → Ck be a holomorphic curve. Then F is a
quasiregular ωsym-curve, where ωsym is the standard symplectic form on Ck .
Fix y ∈ Rn and define F : Rn → Rn+1 by x 7→ (x , x · y). Then F is a quasiregular
dx1 ∧ · · · ∧ dxn-curve.
Let p : Rn+1 → T n+1 be the standard (Riemannian) covering map and let
ω = π∗

1 volS1 ∧ · · · ∧ π∗
n volS1 , where each πi : T

n+1 → S1 is the projection. Then
p ◦ F : Rn → T n+1 is a quasiregular ω-curve.

Susanna Heikkilä (UH) QR maps and curves Feb 4, 2022 15 / 18



A different kind of example

Let F : R2 → R3 be the mapping (x , y) 7→ (y , x ,−2x). Let ω1 = dx ∧ dy ∈ Ω2(R3) and
ω2 = dx ∧ dy + dx ∧ dz ∈ Ω2(R3).

Then ||DF || =
√

5, ⋆F ∗ω1 = −1, and ⋆F ∗ω2 = 1. We also have that ||ω1|| = 1 and
||ω2|| =

√
2.

We want to know if there exists Ki ≥ 1 satisfying

(||ωi || ◦ F ) ||DF ||2 ≤ Ki (⋆F
∗ωi )

for i = 1, 2.

Since ⋆F ∗ω1 < 0, no suitable K1 exists. For K2 we can choose K2 = 5
√

2.

Hence, F is not a quasiregular ω1-curve but it is a quasiregular ω2-curve.
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Some results

Let F : M → N be a non-constant K -quasiregular ω-curve between connected, oriented
Riemannian manifolds with n = dimM < dimN.

Open?

No.

Discrete?

▶ In general, no.
▶ If n ≥ 3, N is a product manifold, K is close enough to one, and ω = vol×N , then yes!

F ∈ W 1,p
loc (M,N) for some p = p(n,K ) > n?

Yes!

Differentiable a.e.?

Yes!

⋆F ∗ω > 0 a.e.?

▶ In general, no.
▶ If n ≥ 3, N is a product manifold, K is close enough to one, and ω = vol×N , then yes!
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Thank you!
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