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Probability theory

Topological spaces offer a suitable framework for many natural
constructions in probability theory

If X is a topological space then the Borel σ-algebra B(X ) is the
smallest σ-algebra containing the open sets of X

If X and Y are topological spaces, then any continuous function
f : X → Y is measurable

A topology can thus generate a measurable structure and
provide a large class of measurable functions
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Probability theory cont.

If µ is a measure on a measurable space X , then the mapping
T : L1(µ)→ R defined by

T [f ] :=

∫
X
µ(dx) f (x) := µ[f ]

is a positive linear functional known as the evaluation map

One can ”recover” measures of sets via the indicator function

µ(A) =

∫
X
µ(dx) 1(x ∈ A) = µ[1(· ∈ A)]
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Probability theory cont.

Supopose that the topology on X is metrizable by a metric d

For any two probability measures on X , it follows that µ = ν if and
only if µ[f ] = ν[f ] for all continuous bounded functions f ∈ Cb(X )

The metric structure allows one to shift their view from probabilities
of events to expectations of continuous bounded functions
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A Bourbakian approach to probability theory

Theorem (Riesz-Markov-Kakutani)

Let X be a locally compact Hausdorff space. For any positive linear
functional ψ on Cc(X ), there is a unique Radon measure µ on X such that

ψ[f ] =

∫
X
µ(dx) f (x) := µ[f ]

for all f ∈ Cc(X ).

If µ[1] = 1, then µ is a probability measure

A radon probability measure is both inner- and outer regular

Outer regular: µ(E ) = inf{µ(U) : E ⊂ U, U is open}
Inner regular: µ(E ) = sup{µ(K ) : K ⊂ E , K is compact}
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Examples

Let ρ ∈ L1(µ) such that ρ ≥ 0 almost everywhere and ||ρ||1 = 1 then

ψ[f ] :=

∫
X
µ(dx) ρ(x)f (x)

Let X = [0, 1], define the integral as the Riemann integral then

ψ[f ] :=

∫ 1

0
dx f (x)

defines a measure on [0, 1] with B([0, 1]) this is the pre-completion
Lebesgue measure
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Uniqueness of Radon probability measures

Suppose that X is a separable locally compact metric space

For Radon probability measures µ and ν it follows that µ = ν if and
only if µ[f ] = ν[f ] for all f ∈ Cc(X )

Thus one can begin from a theory of positive linear functionals on a
separable locally compact metric space and generate measurable
structure, highly regular probability measures, and criteria for the

uniqueness of said measures
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Abstract approximation results

A subset of functions M ⊂ Cb(X ) is called separating if µ[f ] = ν[f ]
for any f ∈ M implies that µ = ν

By the previous remarks, if X is a metric space then Cb(X ) is
separating, and if X is a separable locally compact metric space then
Cc(X ) is separating
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Abstract approximation results cont.

A set of functions M ⊂ Cb(X ) is said to separate points if for every
pair of distinct points x , y ∈ X there exists f ∈ M such that
f (x) 6= f (y)

The same set of functions is called nowhere vanishing if for every
x ∈ X there exists a function f ∈ M such that f (x) 6= 0

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space and let A ⊂ C (X ) be a nowhere
vanishing subalgebra. The subalgebra A is dense in C (X ) if and only if it
separates points.
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Abstract approximation results cont.

An application of the Stone-Weierstrass theorem yields the following
theorem

Theorem

Let X be a complete separable metric space. Any nowhere vanishing
subalgebra A ⊂ Cb(X ) which separates points is separating.

It follows that in order to characterize probability measures on
complete separable metric spaces, it is enough to study their

expectations of functions contained in nowhere vanishing
subalgebras which separate points
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Summary

Let us now remark that a separable topological space which is
metrizable by a complete metric is called a Polish space

A topological space is second countable if it has a countable base

Every locally compact Hausdorff space which is second countable is
Polish

Normalizable positive linear functionals on locally compact
second-countalbe Hausdorff spaces define probability measures on a

Polish space... and every such probability measure is uniquely
defined by its expectations on nowhere vanishing subalgebras of

continuous bounded functions which separate points
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How I learned to love useless algebraic structures like
magmas

Suppose that B ⊂ Cb(X ) is collection of functions which is nowhere
vanishing, separates points, and is closed under multiplication(a
magma)

Let A be the subalgebra generated by B
It can be shown that A is a nowhere vanishing subalgebra that
seperates points consisting of all finite linear combinations of
elements in B
By linearity of the expectation, it can be shown that µ[f ] = ν[f ] for
f ∈ A if and only if µ[g ] = ν[f ] for g ∈ B

By linearity, expectations of nowhere vanishing magmas which
separates points are separating

Kalle Koskinen (University of Helsinki) Basic structure and methods of proof for random probability measures 2022 12 / 32



How I learned to love useless algebraic structures like
magmas cont.

A large number of elementary results in probability theory are
examples of this theorem, but they are almost always proven in a
different way... here are some examples
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Examples

The factorizable continuous bounded functions on Rn defined by
{
∏n

i=1 fi (xi ) : fi ∈ Cb(R)}
Equivalent to stating that the distribution of the random vector
(X ,Y ) is determined by expectations Ef (X )g(Y ) for f , g ∈ Cb(R)

The monomials on the interval [0, 1] defined by {xk : k ∈ N ∪ {0}}
Equivalent to stating that for random variables on the unit interval
X = Y if EX k = EY k for all k ∈ N ∪ {0}
The trigonometric polynomials on R defined by
{
∑k

i=1(ai sin(six) + bi cos(cix) : ai , bi , si , ci ∈ R}
Equivalent to stating that for random variables X ,Y we have X = Y
if E sin(tX ) = E sin(tY ) and E cos(tX ) = E cos(tY ) for all t ∈ R
This is equivalent to stating that X = Y if Ee itX = Ee itY for all t ∈ R
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Weak convergence and the space of probability measures

We say that a sequence µn of probability measures converges weakly
to another probability measure µ if µn[f ]→ µ[f ] for all f ∈ Cb(X )

If X is a Polish space, then there exists a (Levy) metric d on the space
of probability measures M1(X ) which makes M1(X ) into a Polish
space itself and we have µn → µ weakly if and only if d(µn, µ)→ 0
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Prokhorov’s theorem

One of the most remarkable abstract results in probability theory is
Prokhorov’s theorem and one of its corollaries

A probability measure µ is said to be tight if for any ε > 0 there
exists a compact set K such that µ(K ) ≥ 1− ε
A family of probability measures µi is said to be uniformly tight if for
any ε > 0 and all i ∈ I there exists a compact set K such that
µi (K ) ≥ 1− ε

Theorem (Prokhorov)

Let X be a Polish space and let F := {µi}i∈I be a family of probability
measures on X . It follows that F ⊂M1(X ) is compact if and only if F is
uniformly tight.
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Interlude on metric compactness

In a metric space, compactness is equivalent to sequential
compactness

A set K is compact if and only if every subsequence has a convergent
subsubsequence with a limit in K

If every subsequence of a sequence in a compact set converges to the
same limit, then it follows that the sequence converges to the same
limit
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Example

Suppose that fn : K → R converges uniformly on f and that f has a
unique maximizing point x∗ such that f (x∗) = maxx∈K f (x)

Let x∗n be a maximizing point for fn i.e. fn(x∗n ) = maxx∈K fn(x)

Since x∗n belong to a compact set there exists a convergent
subsequence x∗nk with a limit y∗

By definition of a maximizing point, we have fn(x∗nk ) ≥ fnk (x∗)

Taking limits we have f (y∗) ≥ f (x∗), but this implies that y∗ = x∗ by
uniqueness of x∗, thus y∗ = x∗ and every subsequence of x∗n
converges to the same limit x∗ which implies that the sequence of
maximizing points converges to the unique maximizing point of f
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Prokhorov cont.

Using uniform tightness and Prokhorov’s theorem, we have the
following highly applicable theorem

Theorem

Let X be a Polish space, A ⊂ Cb(X ) a nowhere vannishing subalgebra
that seperates points, and µn a uniformly tight sequence of probability
measures on X . If there exists a probability measure µ such that for any
f ∈ A and every convergent subsequence µnk we have µnk [f ]→ µ[f ] then
it follows that µn → µ weakly.

When we have a uniformly tight sequence of probability measures,
it is enough to check the convergence of expectations of functions

in a nowhere vanishing subalgebra which separates points
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Random measures

Recall : when X is a Polish space M1(X ) is a Polish space

A measurable function µ : (Ω,F ,P)→ (M1(X ),B(M1(X ))) is called
a random measure

The distribution of a random measure is uniquely defined by P(µ ∈ A)
where A is an open set in the space of probability measures

Depending on your predilection to topology this may or may not be a
suitable starting point
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A prototypical example

Let m ∈ Rk be a vector and let µ(m) be the Gaussian measure on Rk

with mean m and variance 1

To be exact, we have

µ(m)[f ] =
1
√

2π
k

∫
Rk

dx e−
||x−m||2

2 f (x)

Suppose now that m : (Ω,F ,P)→ (Rk ,B(Rk)) is a measurable
function i.e. a random variable

The map m 7→ µ(m) is sequentially continuous by dominated
convergence and thus it is measurable, so the map
ω 7→ m(ω) 7→ µ(m(ω)) is a random measure
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A nowhere vanishing subalgebra that separates points

Fix f ∈ Cb(X ), the mapping µ 7→ µ[f ] is trivially sequentially
continuous and thus continuous

Let A ⊂ Cb(X ) be a nowhere vanishing subalgebra that seperates
points

Let A′ ⊂ Cb(M1(X )) be the subalgebra generated by the maps
µ 7→ µ[f ] for f ∈ A
Let µ ∈M1(X ), if µ[f ] = 0 for all f ∈ A then µ is not even a
probability measure, thus there must exist f ∈ A such that µ[f ] 6= 0
so A′ is nowhere vanishing

Let µ, ν ∈M1(X ) such that µ 6= ν, if µ[f ] = ν[f ] for all f ∈ A then
it follows that µ = ν which is a contradiction, thus there must exist
f ∈ A such that µ[f ] 6= ν[f ] and thus A′ separates points
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The generated subalgebra

The generated subalgebra A′ consists of finite linear combinations
monomials µ 7→

∏k
i=1 µ[fi ] where fi ∈ A

By linearity, we are thus interested in expectations of the form
E
∏k

i=1 µ[fi ]

If we interpret this as a random vector (µ[f1], µ[f2], ..., µ[fk ]), then the
distribution of this random vector is uniquely defined by its

characteristic function t 7→ Ee i
∑k

i=1 tiµ[fi ]

Notice that
∑k

i=1 tiµ[fi ] = µ
[∑k

i=1 ti fi

]
and

∑k
i=1 ti fi ∈ A

It follows that the expectations of monomials are completely
determined by the maps s 7→ Ee isµ[f ] where s ∈ R and f ∈ A
Going backwards, we see that this is precisely the characteristic
function the random variable µ[f ]
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Penultimate theorem

Theorem

Let X be a Polish space and let A ⊂ Cb(X ) be a nowhere vanishing
subalgebra that separates points. It follows that µ = ν in distribution if
and only if µ[f ] = ν[f ] in distribution for any f ∈ A.

This result follows by noting that the previous slide proved that A′ is
separating and its elements expectations are uniquely determined by
the distributions of µ[f ] for f ∈ A
One should now understand that the ”distribution of a distribution”
are terms of the form P(µ ∈ A) for open sets A and ”expectations of
expectations” are the terms of the form Eg(µ[f ]) for g ∈ Cb(R) and
f ∈ A
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Uniform tightness of random measures

The last object to discuss is the uniform tightness of a collection of
random probability measures

We begin with a ”definitive” compact set in the space of probability
measures

Let ε > 0 and let Kk,ε be a sequence of compact sets in X
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Uniform tightness of random measures cont.

Consider the set

Kε :=
∞⋂
k=1

{
µ : µ(Kk,ε) ≥ 1− ε

2k

}
.

Observe that if we take a sequence µn ∈ Kε, then by definition this
sequence is uniformly tight and thus there exists a weakly convergent
subsequence

One consequence of weak convergence is that µ(F ) ≥ lim supn µn(F )
for any closed sets and thus the weakly convergent limit satisfies the
inequalities in the intersection

It follows that Kε is compact for any ε > 0
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Uniform tightness of random measures cont.

For a random measure µ, we introduce the intensity measure Eµ by
duality

(Eµ)[f ] := Eµ[f ]

for f ∈ Cb(X )

If K ⊂ X is a compact set then µ(K ) is a random variable and by
Markov’s inequality, we have

P(µ(K ) ≥ 1−
√
ε) ≥ 1− 1− Eµ(K )√

ε
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FUniform tightness of random measures cont.

It follows that if the intensity measures Eµn are uniformly tight, then
for every ε > 0 there exists a compact set Kε such that

P(µn(Kε) ≥ 1−
√
ε) ≥ 1−

√
ε

for all n

Returning to the set Kε, we have

1− P(µn ∈ Kε) ≤
∞∑
k=1

(
1− P

(
µn(Kk,ε) ≥ 1− ε

2k

))
≤
√
ε

∞∑
k=1

1

2
k
2

It follows that µn is uniformly tight
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Converse result

The converse result is ”trivial”

If µn is uniformly tight and Eµnk is a subsequence, by uniform
tighhtness there always exists a subsubsequence µnkj which converges

weakly

Because µ 7→ µ[f ] is a continuous function for all f ∈ Cb(X ), it
follows that Eµnkj [f ]→ Eµ[f ] for any f ∈ Cb(X ) which implies that

the intensity measure is uniformly tight
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Ultimate theorem

Theorem

Let µn be a sequence of random measures such that the sequence of
intensity measures Eµn is uniformly tight. Let A ⊂ Cb(X ) be a nowhere
vanishing subalgebra that separates points. It follows that if µn[f ]→ µ[f ]
weakly for any f ∈ A then µn → µ weakly.

It follows that for such uniformly tight random measures it is enough
to study the weak convergence of the evaluation maps µn[f ] for f ∈ A
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Final example

Recall that random mean Gaussian measure µ(m) defined by

µ(m)[f ] :=
1
√

2π
k

∫
Rk

dx e−
||x−m||2

2 f (x)

The intensity measure Eµ is equivalent to

Eµ[f ] =
1
√

2π
k

∫
Rk

dx e−
||x||2

2 Ef (x + m)

Moments

Eµ[xixj ] = δij + Emimj , Eµ[xi ]µ[xj ] = Emimj
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Thank you!
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