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Disordered systems and Brownian potentials

Problem 1: disordered systems

In statistical physics, a system with state space S described by Gibbs measures

G(dx) =
e−βH(x) dx∫
S
e−βH(y) dy

.

Thermodynamic quantities of interest to the physics community tend to rely on
computation of the partition function

Z =

∫
S

e−βH(y) dy ,

or the free energy logZ .
Disordered systems include some inhomogeneity in the Hamiltonian H.
An example would be random walk vs. the Sinai-Kesten random walk.
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Disordered systems and Brownian potentials

A continuous model

A different related toy model is that of a particle restricted to the interval [0, L] and
subject to a random force F . To model random inhomogeneities we assume that F (x) is
distributed as white noise around some mean value f0. Then the potential U is

U(x) = −
∫ x

0
F (x) dx = f0x + σBx ,

with B being a standard Brownian motion. For the sake of simplicity we use scaling
properties to get rid of the inverse temperature β, and index with the drift,

ZL =

∫ L

0
e−βU(x) dx .

Since thermodynamic variables have the form of expectation values, the partition
function must be computed:

g(x) =

∫ L

0 g(x)e−βU(x) dx∫ L

0 e−βU(x) dx
.
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Disordered systems and Brownian potentials

Special case: zero drift and L exponential random variable

We define a related functional

A
(ν)
t =

∫ t

0
e2(νs+Bs ) ds

which can be related to Z through scaling. In particular, we write At = A
(0)
t .

An application of Bougerol’s identity

sinh(Bt)
d
= WAt ,

where W Brownian motion independent of the B contained in A, allows recovery of
much information about the distribution of At . We focus first on the case with L = Lλ an
exponentially distributed random variable with parameter λ > 0.
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Disordered systems and Brownian potentials

Bougerol’s identity

Theorem (Alili and Dufresne)

Let Bt ,Wt be two independent standard Brownian motions, and let At =
∫ t

0 e2Bs ds.
Then, it holds that

sinh(Bt)
d
= WAt .

Sketch of argument.

Consider the Markov process

Xt = eBt

∫ t

0
e−Bs dWs , W ⊥ B.

An application of Itô’s formula yields the SDE

dXt = 1
2Xt dt + (Xt dBt + dWt).

The above can equivalently be expressed as

dXt = 1
2Xt dt + (X 2

t + 1)1/2 dβt ,

with βt another Brownian motion.

J. Lindblad Exponential functionals of stoch. proc. Dec 22 6 / 18



Disordered systems and Brownian potentials

Bougerol’s identity

Theorem (Alili and Dufresne)

Let Bt ,Wt be two independent standard Brownian motions, and let At =
∫ t

0 e2Bs ds.
Then, it holds that

sinh(Bt)
d
= WAt .

Sketch of argument.

An application of Itô’s formula to the process Yt = sinh(βt) yields

dYt = 1
2Yt dt + (Yt dBt + dWt).

A simple inspection lets us conclude that Xt
d
= Yt , for any fixed t ≥ 0. Finally,

conditioning on the process B and applying the Itô isometry allows us to conclude

Xt
d
=

∫ t

0
e2Bs ds,

and the identity now follows.
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Disordered systems and Brownian potentials

Special case: zero drift and L exponential random variable

We observe first that by Brownian scaling

E[W 2m
ALλ

] = E[N2m]E[Am
Lλ ], (1)

where N is a standard normal r.v.

Furthermore, |BLλ | is distributed as an exponential variable with parameter θ =
√
2λ. As

such,

E[sinh(BLλ)2m] =

∫ ∞
0

θe−θx(sinh x)2m dx .

Provided that θ > 2m, an application of the formula sinh x = 1−e−2x

2e−x and a change of
variables x = − 1

2 log t yields the formula

E[sinh(BLλ)2m] =
θ

22mB

(
θ − 2m

2
, 2m + 1

)
, (2)

where B(x , y) =
∫ 1
0 tx−1(1− t)y−1 dt is the Beta function.

The use of (1)-(2) with an application of Bougerol’s identity sinh(Bt)
d
= WAt , allows us

to obtain the formula, valid for m ≥ 0, θ > 2m,

E[Am
Lλ ] =

Γ(1 + m)Γ(θ/2 + 1)Γ(θ/2−m)

2mΓ(θ/2)Γ(1 + m + θ/2)
.
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Disordered systems and Brownian potentials

It can be inferred from the formula

E[Am
Lλ ] =

Γ(1 + m)Γ(θ/2 + 1)Γ(θ/2−m)

2mΓ(θ/2)Γ(1 + m + θ/2)

that there are components of a beta and gamma variable, independently of each other.

The following theorem holds.

Theorem

Let λ > 0, a =
√
λ/2, and let Lλ be an exponential variable with parameter λ,

independent of the BM B. Then we have the identity in distribution

ALλ

d
=
β1,a

2Γa
, β1,a ⊥ Γa, (3)

where β1,a denotes a beta variable and Γa a gamma variable, i.e.

P(β1,a ∈ dx) = a(1− x)a−11(0,1)(x)dx ,

P(Γa ∈ dx) =
xa−1e−x

Γ(a)
1(0,∞)(x)dx .
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Disordered systems and Brownian potentials

The identity ALλ

d
=

β1,a
2Γa

allows us to compute the mean free energy that we were
originally interested in. It is the case that

E[log Γa] = ψ(a), E[log β1,a] = ψ(1)− ψ(1 + a),

where ψ(z) = d
dz log Γ(z) is the digamma function.

Applying the properties
ψ(z + 1) = ψ(z) + 1

z
and ψ(1) = −γ, one obtains

E[logALλ ] = −γ − 1√
λ/2
− 2ψ(

√
λ/2).

If we use Brownian scaling to move back to the original problem, we get the following.

Proposition

Let a particle be restricted to the interval [0, L], L being exponential with parameter
λ > 0, and let the particle be subject to the Brownian potential U(x) = σBx , Bx a
standard Brownian motion. Then, the partition function and mean free energy of the
system is

Z
(0,σ)
L =

∫ L

0
e−σBx dx , E[logZ

(0,σ)
L ] = −2 log σ − γ − 1

σ

√
2/λ− 2ψ(σ

√
λ/2).

Above γ denotes the Euler-Mascheroni constant γ := limn→∞
∑n

k=1
1
k
− log n.
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Disordered systems and Brownian potentials

What now?

There are several remarks to be made.
1 There are several generalizations of Bougerol’s identity that allows one to say things

about Aνt for ν 6= 0.

The computations are truly horrifying, sadly.
2 Marc Yor has proved with another method that there is a more general identity

A
(ν)
Tλ

d
=
β1,a

2Γb
, a =

1
2

(
√
ν2 + 2λ+ ν), b =

1
2

(
√
ν2 + 2λ− ν).

These naturally lead to a whole family of explicitly solvable models with drifted
potentials.

3 If ν > 0 and we let λ→ 0 in the identity above, we obtain the result

A(−ν)
∞ =

1
2Γν

.

This was first proved by D. Dufresne in an insurance setting.
4 Knowledge of E[A

(ν)
Tλ

] also allows one to recover the Laplace transform of At at fixed
t > 0, provided the exponential variable T is independent of the underlying
Brownian motion,

λ

∫ ∞
0

e−λtE[A
(ν)
Tλ
|Tλ = t] dt = E[A

(ν)
Tλ

].
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Disordered systems and Brownian potentials

References for part 1

A. Comtet, C. Monthus, and M. Yor. Exponential functionals of Brownian motion
and disordered systems. Journal of Applied Probability 35, (1998), 255-271.

M. Yor. On Some Exponential Functionals of Brownian Motion. Adv. in Appl. Prob.
24, (1992), 509-531.

S. Vakeroudi. Bougerol’s identity in law and extensions. Probab. Surveys 9, (2012),
411-437.
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Exponential functionals in finance

Mathematical finance in 2 minutes

Mathematical finance concerns the dynamics of the value St , 0 ≤ t ≤ T of assets,
and of computing the distributional properties of f (ST ), for given functions f known
as derivatives.

A typical method is to assume a stochastic setting with asset prices governed by

dSt = rSt dt + σSt dWt ,

meaning that S(t) = S0 exp
(
(r − σ2/2)t + σWt

)
.

For insurance purposes certain types of derivatives have wide use in the industry,
especially the class of options that give the contract holder
max(S(T )− K , 0) = (S(T )− K)+ at the maturity date T .

Financial arguments allow one to conclude that there is a fair price at time t < T
for the option

Ct,T (K) = e−r(T−t)E[(ST − K)+|Ft ].
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Exponential functionals in finance

Problem 2: Asian options

Asian options are also known as Average-Value (AV) options, and for this class of options
the payoff function replaces the value S(T ) with an average value

A(T ) =
1

T − t0

∫ T

t0

Su du,

where t0 < T is the start time of the average value. The corresponding fair price at time
t ∈ [t0,T ],

Ct,T (K ′) =
e−r(T−t)

T − t0
E[(AT − K ′)+|Ft ], AT =

∫ T

t0

Su du

where K ′ = K(T − t0).

Asian option values are normally computed using approximations and numerical
techniques due to:

availability of such methods

efficiency of modern computational methods

efficiency of modern hardware

...but also due to gaps in the knowledge of the distribution of A(ν)
t .
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Exponential functionals in finance

“...it is impossible to derive an analytic expression for an AV-option.” (Kemna and Vorst,
1990)

Recall,

Ct,T (K ′) =
e−r(T−t)

T − t0
E[(AT − K ′)+|Ft ].

Assuming t0 < t < T , it is possible to arrange

AT =

∫ T

t0

Su du =

∫ t

t0

Su du + S(t)

∫ T−t

0
e(r−σ2/2)u+σBu du,

where Bs = Wt+s −Wt . By further factoring out S(t) we obtain a formula in terms of
the remaining randomness at time t,

Ct,T (K ′′) =
S(t)e−r(T−t)

T − t0
E

[(∫ T−t

0
e(r−σ2/2)s+σBs ds − K ′′

)+
]
,

where we now have K ′′ = 1
St

(K(T − t0)−
∫ t

t0
Su du).

We note that if K ′′ ≤ 0 the formula has the simplification

E

[(∫ T−t

0
e(r−σ2/2)s+σBs ds − K ′′

)+
]

= E[A
(ν)
T−t ]− K ′′, ν = r − σ2/2.
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Ct,T (K ′′) =
S(t)e−r(T−t)

T − t0
E

[(∫ T−t

0
e(r−σ2/2)s+σBs ds − K ′′

)+
]
,

where we now have K ′′ = 1
St

(K(T − t0)−
∫ t

t0
Su du).

We note that if K ′′ ≤ 0 the formula has the simplification

E

[(∫ T−t

0
e(r−σ2/2)s+σBs ds − K ′′

)+
]

= E[A
(ν)
T−t ]− K ′′, ν = r − σ2/2.
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To summarize: assuming the deterministic quantity
∫ t0
0 Su du ≥ K(T − t0), we obtain

the formula for the Asian option

Ct,T (K) = St

(
1− e−r(T−t)

r(T − t0)

)
− e−(T−t)

(
K − 1

T − t0

∫ t

t0

Su du
)
.

Furthermore, we see that knowledge about the distribution of Aνt is of high interest in
financial applications.

Further knowledge of the moments E[(A
(ν)
t )m] would be useful.

Knowledge of the distribution of other quantities such as
A

(ν)
t + x ,

(A
(ν)
t + x)+,∫ T

t0
exp(−Xs) ds, with Xt in the class of Lévy processes,

would be highly useful.

Much is known about the distribution of said quantities due to the research of M. Yor, D.
Dufresne, and others.
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We now let X be a Lévy process and review some results about the distribution of

Zt =

∫ t

0
e−Xs ds.

Theorem (Salminen and Vostrikova)

Assume Xt is a Lévy process satisfying E[e−λXt ] = e−tφ(λ) <∞, for all λ ≥ 0, t ≥ 0. If
further, φ(i) 6= φ(j) for all 0 ≤ i < j ≤ n, then for n ∈ N, we have the formula

E[Z n
t ] = n!

n−1∑
k=0

e−tφ(k) − e−tφ(n)∏n
i=0,i 6=k(φ(i)− φ(k))

.

The proof relies on the independence of the increments on X and can be carried out by
induction.

J. Lindblad Exponential functionals of stoch. proc. Dec 22 16 / 18



Perpetual exponential functionals

Some further results when t = ∞

In some cases the functional Z∞ is highly tractable for the same kind of analysis.

Corollary (Salminen and Vostrikova)

Let X be a Lévy process with Laplace exponent φ. Define N := min{n ∈ N : φ(n) ≤ 0}.
Then,

E[Z n
∞] =

{
n!∏n

k=1 φ(k)
, if n < N,

+∞, if n ≥ N.

In cases that are not well-behaved for positive integer moments one can sometimes derive
information from the negative moments.

Proposition (Bertoin and Yor)

Assume (1) E[eλXt ] = etϕ(λ) <∞,∀t, λ ≥ 0, and (2) m := E[X1] = ϕ′(0+) > 0. Then,
for all k ∈ N and t ∈ (0,+∞] we have E[Z−k

t ] <∞. The formula

E[Z−k
∞ ] = m

k−1∏
i=1

ϕ(i)

i

holds. Moreover, if Xt lacks positive jumps, then Carleman’s Criterion is satisfied and the
distribution of Z∞ is determined by its negative integer moments.
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Thank you for your interest!
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