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[. . . ] to find a tangent means to draw a line that connects two
points of the curve at an infinitely small distance, or the continued
side of a polygon with an infinite number of angles, which for
us takes the place of the curve. This infinitely small distance can
always be expressed by a known differential like dv , or by a relation
to it, that is, by some known tangent.

(G. W. Leibniz, 1684)
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[. . . ] the idea of infinitely small or infinitesimal quantities seems to
appeal naturally to our intuition. At any rate, the use of infinitesi-
mals was widespread during the formative stages of the Differential
and Integral Calculus.

However, neither [Leibniz] nor his disciples and successors were able
to give a rational development leading up to a system of this sort.
As a result, the theory of infinitesimals gradually fell into disrepute
and was replaced eventually by the classical theory of limits.

[. . . ] Leibniz’ ideas can be fully vindicated and [. . . ] they lead to a
novel and fruitful approach to classical Analysis and to many other
branches of mathematics. The key to our method is provided by the
detailed analysis of the relation between mathematical languages
and mathematical structures which lies at the bottom of contem-
porary model theory.

(A. Robinson, 1966)
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[Non-standard analysis] allows one to rigorously manipulate things
such as “the set of all small numbers”, or to rigorously say things
like “η1 is smaller than anything that involves η0”, while greatly
reducing epsilon management issues by automatically concealing
many of the quantifiers in one’s argument. One has to take care as
to which objects are standard, non-standard, sets of non-standard
objects, etc., especially when transferring results between the stan-
dard and non-standard worlds, but as long as one is clearly aware
of the underlying mechanism used to construct the non-standard
universe and transfer back and forth [. . . ], one can avoid difficulty.

(T. Tao, 2007)

Joni Puljujärvi Intro to Non-standard Analysis March 31, 2023 4 / 39



Vocabularies and structures

By a vocabulary, we mean any set of constant symbols, function
symbols and relation symbols. Function and relation symbols S come
with an arity, denoted by ♯S . E.g. usually ♯+ = 2 and ♯< = 2.
If τ is the vocabulary {c0, . . . , cm−1, f0, . . . , fn−1,R0, . . . ,Rk−1}, then
a τ -structure is a tuple

M = (M, cM0 , . . . , cMm−1, f
M
0 , . . . , f Mn−1,R

M
0 , . . . ,RM

k−1),

where
▶ M is a set,
▶ each cMi ∈ M,
▶ each f Mi is a function M♯fi → M, and
▶ each RM

i is a subset of M♯Ri .
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Terms

Let τ be a vocabulary. The set of τ -terms is defined as follows.
We fix an infinite set of variables vi , i ∈ N. Each vi is a τ -term.
If c ∈ τ is a constant symbol, then c is a τ -term.
If f ∈ τ is a function symbol with arity n and t0, . . . , tn−1 are τ -terms,
then f (t0, . . . , tn−1) is a τ -term.

Example
Let τ = {+, 1}, where + is a binary function symbol and 1 is a constant
symbol. We denote +(t, t ′) by t + t ′ as is customary. Now the following
are τ -terms:

1,
v0 + v6,
(v3 + 1) + v2.
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Formulas

First-order logic over a vocabulary τ is a set of formulas defined as follows:
If t and t ′ are variables, then t = t ′ is a(n atomic) τ -formula.
If R ∈ τ is a relation symbol of arity n and t0, . . . , tn−1 are τ -terms,
then R(t0, . . . , tn−1) is a(n atomic) τ -formula.
If φ is a τ -formula, then ¬φ (“not φ”) is a τ -formula.
If φ and ψ are τ -formulas, then φ ∧ ψ (“φ and ψ”), φ ∨ ψ (“φ or ψ”),
φ→ ψ (“if φ, then ψ”) and φ↔ ψ (“φ if and only if ψ”) are
τ -formulas.
If φ is a τ -formula and x is a variable, then ∃xφ and ∀xφ are
τ -formulas.
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Truth definition

If M is a τ -structure and φ(x0, . . . , xn−1) a τ -formula, then we say that
M and a tuple (a0, . . . , an−1) ∈ Mn satisfy φ if the obvious thing holds.
For example:

M and (a, b) satisfy x = y if a = b.
M and ā satisfy φ ∧ ψ if they satisfy both φ and ψ.
M and (a0, . . . , an−1) satisfy ∃yφ(y , x0, . . . , xn−1) if there exists
b ∈ M such that M and (b, a0, . . . , an−1) satisfy φ.

If M and (a0, . . . , an−1) satisfy φ(x0, . . . , xn−1), we write

M |= φ(a0, . . . , an−1).

If Σ is a set of τ -sentences, we write M |= Σ if M |= φ for every φ ∈ Σ.
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Real closed fields

Let τR be the vocabulary {0, 1,+, ·, <} and denote by R the
τR-structure

(R, 0R, 1R,+R, ·R, <R),

where R is the set of real numbers 0R and 1R are the 0 and 1 of the
reals, +R and ·R are the addition and multiplication of the reals, and
<R is the ordering of the reals. We will drop the superscript for
convenience.
Denote by T the first-order theory of R, i.e. the set containing every
first-order τR-sentence true in R.
What does T say about R?
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First-order vs. second-order logic

T says, for instance, the following things:
(R,+, ·) is a field with 0 as the additive neutral element and 1 as the
multiplicative neutral element.
(R, <) is a dense linear order, i.e. for every a, b ∈ R, if a < b, there is
c ∈ R with a < c < b.
(R,+, ·, <) is an ordered field, i.e. (R, <) is a linear order and for all
a, b, c ∈ R we have

a < b =⇒ a+ c < b + c and a, b > 0 =⇒ ab > 0.

(R,+, ·) is formally real, i.e. if any sum of squares of elements of R
equals zero, then each of those elements must be zero.
Every polynomial of odd degree has at least one root, and for every
element a ∈ R there is b ∈ R such that a = b2 or a = −b2.
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T does not say any of the following things (which are true):
(R,+, ·, <) is a complete ordered field, i.e. every bounded subset
A ⊆ R has a least upper bound a ∈ R.
(R,+, ·, <) has the Archimedean property, i.e. for any a ∈ R there is
n ∈ N such that n > a.
There are no positive infinitesimally small elements in R, i.e. for all
a ∈ R if a ≥ 0 and a < 1/n for every n ∈ N, then a = 0.

In addition T does not recognize whether an element is a natural number
or not. However, it does recognize whether an element is any particular
natural number.
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Existence of non-standard models

For any n ∈ N, we denote by n the τR-term 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

. Then
obviously nR = n.
Let c be a new constant symbol. Denote by T ∗ the theory

T ∪ {0 < c} ∪ {nc < 1 | n ∈ N},

which, in addition to the theory of R, states that the interpretation of
c will be an infinitesimal.
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Theorem (Compactness)
Let Σ be any set of first-order τ -sentences such that for any finite Σ′ ⊆ Σ,
there exists a τ -structure M such that M |= Σ′. Then there exists a
τ -structure M such that M |= Σ.

Corollary
T ∗ has a model.
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Hyperreal numbers

The hyperreal numbers are a τR-structure ∗R = (∗R, 0, 1,+, ·, <) that is an
elementary extension of R but contains infinitesimals. It satisfies the
following:

1 ∗R |= T .
2 R ⊆ ∗R.
3 For any τR-formula φ(x0, . . . , xn−1) and a0, . . . , an−1 ∈ R,

∗R |= φ(a0, . . . , an−1) ⇐⇒ R |= φ(a0, . . . , an−1).

4 For any relation R ⊆ Rn, there is a “natural” extension ∗R ⊆ ∗Rn

(∗R looks like R and ∗R ∩ Rn = R).
5 For any function f : Rn → R, there is a “natural” extension

∗f : ∗Rn → ∗R (∗f looks like f and ∗f ↾ R = f ).
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Theorem (Transfer principle, technical)
For a relation R ⊆ Rn and a function f : Rm → R, introduce a new relation
symbol R and a new function symbol f . Let

τ = τR ∪
⋃
n∈N

({R | R ⊆ Rn} ∪ {f | f : Rn → R}).

Then for any first-order τ -formula φ(x0, . . . , xn−1) and a0, . . . , an−1 ∈ R,
we have

R |= φ(a0, . . . , an−1) ⇐⇒ ∗R |= φ(a0, . . . , an−1),

where RR = R and f R = f , and R
∗R = ∗R and f

∗R = ∗f .

Theorem (Tranfer principle, simplified)
If Ri are relations on R, fj functions on R and ak elements of R, then for
any reasonably simple statement Φ:

Φ holds for Ri , fj and ak in R iff Φ holds for ∗Ri , ∗fj and ak in ∗R.
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Examples of transfer

Example
As |sin(x)| ≤ 1 for all x ∈ R, we have ∗|∗sin(x)| ∗≤ 1 for all x ∈ ∗R.

Note: We will henceforth drop the star from ∗|·| and ∗≤ because it’s
annoying and obfuscates notation.

Example
As R is Archimedean, for every a ∈ R there is n ∈ N with a < n, i.e. we
have

R |= ∀x∃y(N(y) ∧ x < y).

Here N is the name for the set of natural numbers. By the transfer
principle, ∗R |= ∀x∃y(N(y) ∧ x < y).

Thus, if a ∈ ∗R is unbounded, there is no standard natural number n such
that |a| < n (and hence ∗R is not Archimedean), but there is a
non-standard ω ∈ ∗N such that |a| < ω. This ω must be infinite.
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Infinitesimals and infinite numbers

Definition
We call elements of R standard and elements of ∗R \ R non-standard.
We say that ε ∈ ∗R is an infinitesimal if for every n ∈ N (i.e. every
standard natural number) |ε| < 1/n.
We say that a, b ∈ ∗R are infinitesimally close to each other if a− b is
an infinitesimal. We then write a ≃ b.
We say that ω ∈ ∗R is infinite if for every n ∈ N (i.e. every standard
natural number), n < ω.
We say that ω ∈ ∗R is unbounded if |ω| is infinite.
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Easy facts:
ε ∈ ∗R is an infinitesimal if and only if |ε| < r for every r ∈ R, r > 0.
ε ∈ ∗R is an infinitesimal if and only if 1/ε is unbounded.
If ε is an infinitesimal and |δ| ≤ |ε|, then also δ is an infinitesimal.
Each ≃-equivalence class of a bounded number contains a unique
standard number.
Let F ⊆ ∗R be the set of bounded numbers. Then F/≃ is isomorphic
to R as an ordered field.
If a ≃ c and b ≃ d , then a+ b ≃ c + d , ab ≃ cd and a/b ≃ c/d
(provided that b ̸≃ 0).
If ε and δ are two distinct infinitesimals, then 1/ε ̸≃ 1/δ.
If a ≃ c and b ≃ d , then a < b if and only if c < d .
For every r ∈ R there is q ∈ ∗Q such that r ≃ q.
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Definition
The ≃-equivalence class of a bounded number a ∈ ∗R is called the
monad of a.
The unique standard number residing in the monad of a is called the
standard part of a and denoted by st a.
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Sequences

Since a sequence (xn)n∈N in R is a function N → R, it has a natural
extension (∗xn)n∈∗N to ∗R, where ∗xn = xn for all n ∈ N.

Theorem
A number x ∈ R is the limit of a sequence (xn) ∈ RN in the sense of
R if and only if ∗xn ≃ x for all infinite n ∈ ∗N.
A sequence (xn) ∈ RN is Cauchy in the sense of R if and only if for all
infinite n,m ∈ ∗N, ∗xn ≃ ∗xm.
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Functions and limits

Theorem
Let f : Rn → R.

Given x0, L ∈ R, f (x) → L when x → x0, in the sense of R, if and
only if the following holds.

For all x ∈ ∗R, if x ≃ x0, then ∗f (x) ≃ L.

f is continuous at a point x0 ∈ R, in the sense of R, if and only if the
following holds.

For all x ∈ ∗R, if x ≃ x0, then ∗f (x) ≃ f (x0).

f is uniformly continuous in the sense of R if and only if the following
holds.

For all x , y ∈ ∗R, if x ≃ y , then ∗f (x) ≃ ∗f (y). (∗)

Note that ∗f is “continuous” at every point of ∗R iff f is uniformly
continuous in R.
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Proof.
We show the equivalence for uniform continuity. Suppose f is uniformly
continuous. Then for any n ∈ N \ {0} there is δn > 0 such that for all
x , y ∈ R with |x − y | < δn, we have |f (x)− f (y)| < 1/n. This means that

R |= ∀x∀y(|x − y | < δn → |f (x)− f (y)| < 1/n).

By the transfer principle,

∗R |= ∀x∀y(|x − y | < δn → |f (x)− f (y)| < 1/n).

Hence, for all x , y ∈ ∗R with |x − y | < δn, we have |∗f (x)− ∗f (y)| < 1/n.
Now if x ≃ y , then |x − y | < δn for all n and thus |∗f (x)− ∗f (y)| < 1/n
for all n. But this means that f (x) ≃ f (y). Hence (∗) holds.
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Proof cont.
Suppose f is not continuous. Then there is ε > 0 such that for any
n ∈ N \ {0} we can find xn, yn ∈ R with |xn − yn| < 1/n but
|f (xn)− f (yn)| ≥ ε. This means that

R |= ∀n ∈ N \ {0}(
∣∣xn − yn

∣∣ < 1/n ∧
∣∣f (xn)− f (yn)

∣∣ ≥ ε).

By the transfer principle,

∗R |= ∀n ∈ N \ {0}(
∣∣xn − yn

∣∣ < 1/n ∧
∣∣f (xn)− f (yn)

∣∣ ≥ ε).

Hence, for all n ∈ ∗N \ {0}, |∗xn − ∗yn| < 1/n and |∗f (∗xn)− ∗f (∗y)| ≥ ε.
Now xn − yn → 0 when n → ∞, so by the previous theorem ∗xω ≃ ∗yω for
any infinite ω ∈ ∗N. However, |∗f (∗xω)− ∗f (∗yω)| ≥ ε, so
∗f (∗xω) ̸≃ ∗f (∗yω). Thus (∗) does not hold.
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Example
The function f : (0, 1) → R, f (x) = 1/x , is continuous since for any
x ∈ (0, 1) and y ∈ ∗R, y ≃ x , we have f (x) = 1/x ≃ 1/y = ∗f (y).

But f is not uniformly continuous, since for any infinite ω ∈ ∗N, we have
1/ω ≃ 1/2ω ≃ 0 but ∗f (1/ω) = ω ̸≃ 2ω = ∗f (1/2ω).
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Differentiation

Theorem
For a function f : R → R and a point x0 ∈ R, the following are equivalent.

f is differentiable at the point x0, in the sense of R.
There is a unique a ∈ R such that whenever x0 ̸= x ≃ x0, then

∗f (x)− f (x0)

x − x0
≃ a.

There is a unique a ∈ R such that whenever h is infinitesimal, then

∗f (x0 + h)− f (x0)

h
≃ a.

Note: The unique a above must be f ′(x0).
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Example
We show that f : R → R, f (x) = x2, is differentiable at any point x0 ∈ R
and f ′(x0) = 2x0.

Fix x0 ∈ R and let x0 ̸= x ≃ x0. Now

∗f (x)− f (x0)

x − x0
=

x2 − x2
0

x − x0
=

(x + x0)(x − x0)

x − x0
= x + x0 ≃ 2x0.

Hence f is differentiable at x0 and f ′(x0) = 2x0.
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Example
We show that f : R → R, f (x) = ex , is differentiable at every point x0 ∈ R
and f ′(x0) = ex0 .

Fix x0 ∈ R and let h ̸= 0 be an infinitesimal. Now

∗f (x0 + h)− f (x0)

h
=

ex0+h − ex0

h
=

ex0eh − ex0

h
= ex0 · e

h − 1
h

.

Now let η = (eh − 1)/h. If we can show that η ≃ 1, then

∗f (x0 + h)− f (x0)

h
≃ ex0η ≃ ex0

and we are done. We proceed to show that η ≃ 1.

As ex is continuous and e0 = 1, for any infinitesimal ε ̸= 0, eε ≃ 1. Thus,
as h is a non-zero infinitesimal, ηh = eh − 1 ≃ 0. Since ηh is a non-zero
infinitesimal, 1/(ηh) is an unbounded number.
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Example (cont.)

Suppose that h > 0. Recall that e = limn→∞
(
1 + 1

n

)n. Thus for any
infinite ω ∈ ∗N, (1 + 1

ω )
ω ≃ e. Now 1/(ηh) is infinite and

e ≃
(

1 +
1

1/(ηh)

) 1
ηh

= (1 + ηh)
1
ηh = (eh)

1
ηh = e

1
η .

Since log(x) is continuous and e ≃ e1/η, we have
1 = log(e) ≃ log(e1/η) = 1/η. But then η = 1/(1/η) ≃ 1/1 = 1. We can
conclude that ex0η ≃ ex0 .

Suppose then that h < 0. Recall that 1/e = limn→∞
(
1 − 1

n

)n. Now
−1/(ηh) is infinite and hence

1/e ≃
(

1 − 1
−1/(ηh)

)− 1
ηh

= (1 + ηh)−
1
ηh = (eh)−

1
ηh = 1/e

1
η .

Then e = 1/(1/e) ≃ 1/(1/e1/η) = e1/η and similarly as before we
conclude ex0η ≃ ex0 .
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Definition
Whenever x ∈ R is given, denote by ∆x a non-zero infinitesimal and if
y = f (x), then denote by ∆y = ∗f (x +∆x)− f (x).

Note: f is differentiable at x iff there is a unique a ∈ R such that for any
infinitesimal ∆x , ∆y/∆x ≃ a. It follows that

f ′(x0) = st

(
∆y

∆x

)
.

Theorem (Increment theorem)
Let f : R → R be differentiable at x ∈ R, and let y = f (x). Then if ∆x is
infinitesimal, so is ∆y , and moreover,

∆y = f ′(x)∆x + ε∆x

for some infinitesimal ε.

Contrast this with the classical result: f (x + h)− f (x) = f ′(x)h + ε(h) |h|
for some function ε : R → R such that ε(h) → 0 when h → 0.

Joni Puljujärvi Intro to Non-standard Analysis March 31, 2023 29 / 39



Definition
Given x ∈ R, denote dx = ∆x . When y = f (x) and f is differentiable at x ,
denote by dy the number f ′(x)dx .

Rewriting the above, we get

dy
dx

= f ′(x),

while (when ∆x is infinitesimal)

∆y

∆x
≃ f ′(x).

Now the increment theorem gets the form

∆y = dy + εdx .
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Chain rule

Theorem
If f is differentiable at x ∈ R and g is differentiable at f (x), then g ◦ f is
differentiable at x and (g ◦ f )′(x) = g ′(f (x))f ′(x).

Proof.
Denote y = f (x) and z = g(y). Now by definition, dy = f ′(x)dx and
dz = g ′(y)dy = g ′(f (x))dy . If we cheat a little:

dz
dx

=
dz
dy

· dy
dx

=
g ′(f (x))dy

dy
· f

′(x)dx
dx

= g ′(f (x))f ′(x).

But here we did not show that g ◦ f actually is differentiable.
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Proof cont.
Instead of dz , dy and dx , look at ∆z , ∆y and ∆x . By the increment
theorem, as ∆x is infinitesimal, so is ∆y . As ∆y is infinitesimal, by the
increment theorem again, so is ∆z and ∆z = g ′(y)∆y + ε∆y for some
infinitesimal ε. Now

∆z

∆x
=

g ′(y)∆y + ε∆y

∆x
= g ′(y)

∆y

∆x
+ ε

∆y

∆x
.

Remember that ∆y/∆x ≃ f ′(x). Then

g ′(y)
∆y

∆x
≃ g ′(y)f ′(x) and ε

∆y

∆x
≃ 0 · f ′(x) ≃ 0,

so
∆z

∆x
≃ g ′(y)f ′(x) + 0 = g ′(f (x))f ′(x).

Thus g ◦ f is differentiable at x and (g ◦ f )′(x) = g ′(f (x))f ′(x).
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Integrals
Given a function f : R → R, we define the function Sf : R3 → R by
setting

Sf (a, b,∆x) =
n−1∑
i=0

f (xi )∆x + f (xn)(b − xn)

for a, b,∆x ∈ R, where n is the largest natural number such that
a+ n∆x ≤ b, x0 = a and xi+1 = xi +∆x for i < n.
In other words, Sf (a, b,∆x) is the Riemann sum of f on the interval
[a, b] with respect to a partition into subintervals of length ∆x .
Now S has a natural extension ∗Sf :

∗R3 → ∗R.
If dx is infinitesimal, then Sf (a, b, dx) is a “sum”

ω∑
i=0

f (xi )dx + f (xω)(b − xω),

where ω ∈ ∗N is infinite.
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Lemma
If f : R → R is continuous on [a, b] and ∆x > 0 is infinitesimal, then
∗S(a, b,∆x) is a bounded number.

Theorem
If f : R → R is continuous on [a, b] and dx is a positive infinitesimal, then∫ b

a
f (x)dx = st ∗S(a, b, dx).

Note that it follows that for positive infinitesimals dx ̸= dy ,
∗S(a, b, dx) ≃ ∗S(a, b, dy). Also:

∫ b

a
f (x)dx ≃

1/dx∑
i=0

f (xi )dx “=”
∑

x∈[a,b]

f (x)dx

for any infinitesimal dx > 0 such that 1/dx ∈ ∗N, where x0 = a, x1/dx = b
and xi+1 − xi = dx .
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Construction of “the” hyperreals
Definition
A family U ⊆ P(N) is a non-principal ultrafilter if

1 ∅ /∈ U,
2 A ∩ B ∈ U for all A,B ∈ U,
3 A ⊇ B ∈ U implies A ∈ U,
4 for any A ⊆ N, either A ∈ U or Ac ∈ U, and
5 for any m ∈ N, {n ∈ N | n > m} ∈ U.

Definition
For (xn), (yn) ∈ RN, denote (xn) ≡U (yn) if

{n ∈ N | xn = yn} ∈ U.

Lemma
≡U is an equivalence relation on RN.
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Definition (Ultrapower)

Denote by R the set of ≡U -equivalence classes. For (xn) ∈ RN, denote by
[xn] the equivalence class of (xn). We make RN/U a τR-structure as
follows.

0R = [0] and 1R = [1],
[xn] +

R [yn] = [xn + yn],
[xn] ·R [yn] = [xn · yn], and
[xn] <

R [yn] iff {n ∈ N | xn < yn} ∈ U.

Lemma
R is well-defined, i.e. the interpretations of the symbols of τR do not
depend on the choice of representatives for the equivalence classes.
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We extend τR to a new vocabulary τ by adding a new symbol R for every
relation R ⊆ Rm and f for every function f : Rm → R.1 We then interpret
RR = R and f R = f like before. We make R a τ -structure by setting

([x0
n ], . . . , [x

m−1
n ]) ∈ RR ⇐⇒ {n ∈ N | (x0

n , . . . , x
m−1
n ) ∈ R} ∈ U

and
f R([x0

n ], . . . , [x
m−1
n ]) = [f (x0

n , . . . , x
m−1
n )].

Theorem (Łoś’ Theorem)

For any τ -formula φ(v0, . . . , vm−1) and (a0
n), . . . , (a

m−1
n ) ∈ RN,

R |= φ([a0
n], . . . , [a

m−1
n ]) ⇐⇒ {n ∈ N | R |= φ(a0

n, . . . , a
m−1
n )} ∈ U.

1This τ has a huge size, in fact |τ | = 22|N| . This, however, doesn’t cause an issue.
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Lemma
The map ι : R → R defined by

ι(x) = [x ] = {(xn) | {n ∈ N | xn = x} ∈ U},

is an elementary embedding, i.e. for any τ -formula φ(v0, . . . , vm−1) and
a0, . . . , am−1 ∈ R,

R |= φ(a0, . . . , am−1) ⇐⇒ R |= φ(ι(a0), . . . , ι(am−1)).

Lemma
R contains infinite numbers and infinitesimals.

Proof.
The equivalence class x of the sequence (n)n∈N is an infinite number: as U
is a non-principal ultrafilter, for every m ∈ N, {n | m < n} ∈ U, and this
set is the set of indices where (n) is larger than m. Due to Łoś’ Theorem,
R |= x > m. But this holds for all m, so x > m for all m. Then 1/x is an
infinitesimal.
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