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Singular integrals

Calderon-Zygmund operator

We say that T is a Calderon-Zygmund operator (CZO) if it is a bounded
linear operator on L?(R9) and it has the representation

TP = [ KCey)f()dy. x ¢ suppf

and the kernel K satisfies
° [K(x,y)l < Zy@: X # ¥
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Singular integrals

Calderon-Zygmund operator

We say that T is a Calderon-Zygmund operator (CZO) if it is a bounded
linear operator on L?(R9) and it has the representation

TP = [ KCey)f()dy. x ¢ suppf

and the kernel K satisfies
o [K(x,y)| < 5. x #,
o |K(x,y) = K(<'.y)| + Ky, x) = K(y,x)| < w(?=]) 2

Ix—y[/|x=y|"’
|x — y| > 2|x — x/| for some increasing subadditve function
w: [0, 00[ — [0, oof with w(0) = 0.
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One of the most fundamental example is the Hilbert transform H defined

by
Hf (x) = lim 1/ fly) dy.
Ix—y|>e

e=0 T X =y

@ Here the kernel is K(x,y) = %% and cx =1, w(t) = 4t.

~

@ The L2 boundedness follows from Hf(f) = —isgn(&)f(§).
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Weighted norm inequalities

We say that an operator T is a bounded operator in LP(w) if

I T o (w) < ClIfllLp(w)-

Coifman, Fefferman, 1974
Calderon-Zymund operators are bounded in LP(w) if and only if w € A,,.
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Another question is the dependence of the weight on the sharp constant C.

A theorem, Hytonen, 2010

A Calderon-Zygmund operator T satisfies the quantitative bound

I Tl 2wy < ClW] Al 1l 2(w)-
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© Dyadic systems
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Dyadic systems

For k € Z, let Dy be a family of cubes in RY.

Dyadic system

A family of cubes D = | J,cz Dk is a dyadic system if it has the following
properties.

@ For a fixed A > 0, each Dy is a partition of R? consisting of cubes of
side length 2K\

Q@ If Q@ cDthen QN Q = {0,Q,Q'}.
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@ The standard dyadic cubes are defined by
D = {2K([0,1[+m) : k€ Z,m e Z}.
o Start from lp = [0, 1] and for k € N let
It = (e + (1)) U e

Then we get a dyadic system by translating the /, and bisecting them
arbitrarily many times. In RY we can take Cartesian products.

v
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Simple yet effective algorithm

o Consider some property P that the cubes in D may or may not satisfy.

@ Let Q be the family of maximal cubes (w.r.t inclusion) that satisfy P.

Corollary 1 (Whitney covering lemma, 1934)

For an open set Q C RY, there exists a set of pairwise disjoint dyadic
cubes W that satisfy

Q diam(W) < dist(W, QF) < 4diam(W),
Q@ 0=, W
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Simple yet effective algorithm

o Consider some property P that the cubes in D may or may not satisfy.

@ Let Q be the family of maximal cubes (w.r.t inclusion) that satisfy P.

Corollary 1 (Whitney covering lemma, 1934)

For an open set Q C RY, there exists a set of pairwise disjoint dyadic
cubes W that satisfy

Q diam(W) < dist(W, QF) < 4diam(W),
Q@ 0=, W

Proof: Choose maximal cubes that satisfy W C Q and
diam(W) < dist(W, Q). O
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Corollary 2 (Calderon-Zygmund decomposition, 1952)

Assume that f € L}(RY) and let 0 < t < ||f||s. Then there exists a family
of disjoint dyadic cubes Q  RY such that

Q t < fo|f| <2%,
Q@ |[f|<tae inRY\pQ.
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Corollary 2 (Calderon-Zygmund decomposition, 1952)

Assume that f € L}(RY) and let 0 < t < ||f||s. Then there exists a family
of disjoint dyadic cubes Q  RY such that

Q t < fo|f| <2%,
Q@ |[f|<tae inRY\pQ.

Proof: Take a maximal collection that satisfies t < fQ |f|. O
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Sparse domination

Sparse family of sets

A collection of sets S is «y-sparse if for every S € S there exists subsets Eg
that are pairwise disjoint and |Es| > 7|S|.

Sparse operator
A sparse operator is of the form

TSF=> 1s(f)s,

Ses

where S is a sparse family of dyadic cubes.
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The sparse operator is bounded in LP with

1T ]e < pp'y M f 1o

and

Cruz-Uribe—Martell-Pérez, 2010

If w € AD, then the sparse operator is bounded in L2(w) with

1T Flli20w) < 47 W]l F Il 2w -
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General sparse domination theorem

The grand maximal operator M 1 is defined by

M f(x) = sup sup [ T(L(5qycf)(y)l-
R3xyeQ

Lerner's abstract domination theorem, 2015

Let T be linear or positive sublinear. Then for every boundedly supported
felland 0<e <1, thereisa (1 — ¢)-sparse family S of dyadic cubes

such that
CTCd
:H-S][ |f|7
S s

Ses

| Tf| <

where ¢y depends only on dimension and

cr = [Tl rree + Ml 0
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The family {3Q : Q € D} can be divided into 37 subcollections, each of
which has the same covering and nestedness properties as D.

Corollary

Under the assumptions of Lerner's abstract domination theorem there are
379(1 — ¢)-sparse collections S;,i = 1,...,3% such that

3d
CTCd .
Tl < = > TEfL.
i=1
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If T is a Calderon-Zygmund operator, then T and M7 map L! boundedly
to L1,

Thus we get
[Tl 2wy < eTealwla Il 2gw)-
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