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Singular integrals

Calderon-Zygmund operator

We say that T is a Calderon-Zygmund operator (CZO) if it is a bounded
linear operator on L2(Rd) and it has the representation

Tf (x) =

ˆ
Rd

K (x , y)f (y) dy , x /∈ supp f

and the kernel K satisfies

|K (x , y)| ≤ cK
|x−y |d , x 6= y ,

|K (x , y)− K (x ′, y)|+ |K (y , x)− K (y , x ′)| ≤ ω( |x−x
′|

|x−y | )
1

|x−y |d ,

|x − y | > 2|x − x ′| for some increasing subadditve function
ω : [0,∞[→ [0,∞[ with ω(0) = 0.
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One of the most fundamental example is the Hilbert transform H defined
by

Hf (x) = lim
ε→0

1

π

ˆ
|x−y |>ε

f (y)

x − y
dy .

Here the kernel is K (x , y) = 1
π

1
x−y and cK = 1, ω(t) = 4t.

The L2 boundedness follows from Ĥf (ξ) = −i sgn(ξ)f̂ (ξ).
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Weighted norm inequalities

We say that an operator T is a bounded operator in Lp(w) if

‖Tf ‖Lp(w) ≤ C‖f ‖Lp(w).

Coifman, Fefferman, 1974

Calderon-Zymund operators are bounded in Lp(w) if and only if w ∈ Ap.
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Another question is the dependence of the weight on the sharp constant C .

A2 theorem, Hytönen, 2010

A Calderon-Zygmund operator T satisfies the quantitative bound

‖Tf ‖L2(w) ≤ C [w ]A2‖f ‖L2(w).
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Dyadic systems

For k ∈ Z, let Dk be a family of cubes in Rd .

Dyadic system

A family of cubes D =
⋃

k∈ZDk is a dyadic system if it has the following
properties.

1 For a fixed λ > 0, each Dk is a partition of Rd consisting of cubes of
side length 2kλ.

2 If Q,Q ′ ∈ D then Q ∩ Q ′ = {∅,Q,Q ′}.
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Examples

The standard dyadic cubes are defined by

D := {2k([0, 1[d+m) : k ∈ Z,m ∈ Z}.

Start from I0 := [0, 1[ and for k ∈ N let

Ik+1 := (Ik + (−1)k+1|Ik |) ∪ Ik .

Then we get a dyadic system by translating the Ik and bisecting them
arbitrarily many times. In Rd we can take Cartesian products.
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Simple yet effective algorithm

Consider some property P that the cubes in D may or may not satisfy.

Let Q be the family of maximal cubes (w.r.t inclusion) that satisfy P.

Corollary 1 (Whitney covering lemma, 1934)

For an open set Ω ⊂ Rd , there exists a set of pairwise disjoint dyadic
cubes W that satisfy

1 diam(W ) ≤ dist(W ,Ω{) ≤ 4 diam(W ),

2 Ω =
⋃

W W .

Proof: Choose maximal cubes that satisfy W ⊂ Ω and
diam(W ) ≤ dist(W ,Ω{).
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Corollary 2 (Calderon-Zygmund decomposition, 1952)

Assume that f ∈ L1(Rd) and let 0 < t < ‖f ‖∞. Then there exists a family
of disjoint dyadic cubes Q ⊂ Rd such that

1 t <
ffl
Q |f | ≤ 2d t,

2 |f | ≤ t a.e. in Rd \
⋃

Q Q.

Proof: Take a maximal collection that satisfies t <
ffl
Q |f |.
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Sparse domination

Sparse family of sets

A collection of sets S is γ-sparse if for every S ∈ S there exists subsets ES

that are pairwise disjoint and |ES | ≥ γ|S |.

Sparse operator

A sparse operator is of the form

TS f =
∑
S∈S

1S〈f 〉S ,

where S is a sparse family of dyadic cubes.
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The sparse operator is bounded in Lp with

‖TS f ‖Lp ≤ pp′γ−1‖f ‖Lp

and

Cruz-Uribe–Martell–Pérez, 2010

If w ∈ AD2 , then the sparse operator is bounded in L2(w) with

‖TS f ‖L2(w) ≤ 4γ−1[w ]A2‖f ‖L2(w).
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General sparse domination theorem

The grand maximal operator MT is defined by

MT f (x) = sup
Q3x

sup
y∈Q
|T (1(3Q){f )(y)|.

Lerner’s abstract domination theorem, 2015

Let T be linear or positive sublinear. Then for every boundedly supported
f ∈ L1 and 0 < ε < 1, there is a (1− ε)-sparse family S of dyadic cubes
such that

|Tf | ≤ cT cd
ε

∑
S∈S

1S

 
3S
|f |,

where cd depends only on dimension and

cT = ‖T‖L1→L1,∞ + ‖MT‖L1→L1,∞ .
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The family {3Q : Q ∈ D} can be divided into 3d subcollections, each of
which has the same covering and nestedness properties as D.

Corollary

Under the assumptions of Lerner’s abstract domination theorem there are
3−d(1− ε)-sparse collections Si , i = 1, . . . , 3d such that

|Tf | ≤ cT cd
ε

3d∑
i=1

TSi |f |.
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A2 theorem

If T is a Calderon-Zygmund operator, then T and MT map L1 boundedly
to L1,∞.

Thus we get
‖Tf ‖L2(w) ≤ cT cd [w ]A2‖f ‖L2(w).
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