Sparse domination and weighted norm inequalities

Aapo Laukkarinen

Domast seminar, May 2023

Aapo Laukkarinen

Sparse domination and weighted norm inequa Domast seminar, May 2023 1 / 19

2 Dyadic systems

э

Calderon-Zygmund operator

We say that T is a Calderon-Zygmund operator (CZO) if it is a bounded linear operator on $L^2(\mathbb{R}^d)$ and it has the representation

$$\mathit{Tf}(x) = \int_{\mathbb{R}^d} \mathcal{K}(x,y) f(y) \, \mathrm{d} y, \quad x
otin \mathsf{supp} \ f(y) \, \mathrm{d} y$$

and the kernel K satisfies

•
$$|K(x,y)| \leq \frac{c_K}{|x-y|^d}$$
, $x \neq y$,

Calderon-Zygmund operator

We say that T is a Calderon-Zygmund operator (CZO) if it is a bounded linear operator on $L^2(\mathbb{R}^d)$ and it has the representation

$$\mathit{Tf}(x) = \int_{\mathbb{R}^d} \mathcal{K}(x,y) f(y) \, \mathrm{d} y, \quad x
otin \mathsf{supp} \ f(y) \, \mathrm{d} y$$

and the kernel K satisfies

•
$$|K(x,y)| \leq \frac{c_{\mathcal{K}}}{|x-y|^d}, x \neq y$$
,
• $|K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \leq \omega(\frac{|x-x'|}{|x-y|})\frac{1}{|x-y|^d},$
 $|x-y| > 2|x-x'|$ for some increasing subadditve function
 $\omega : [0,\infty[\rightarrow [0,\infty[\text{ with } \omega(0) = 0.$

One of the most fundamental example is the Hilbert transform H defined by

$$Hf(x) = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|x-y| > \varepsilon} \frac{f(y)}{x-y} \, \mathrm{d}y.$$

- Here the kernel is $K(x, y) = \frac{1}{\pi} \frac{1}{x-y}$ and $c_{\kappa} = 1, \omega(t) = 4t$.
- The L^2 boundedness follows from $\widehat{Hf}(\xi) = -i \operatorname{sgn}(\xi) \widehat{f}(\xi)$.

We say that an operator T is a bounded operator in $L^p(w)$ if

$$\|Tf\|_{L^{p}(w)} \leq C \|f\|_{L^{p}(w)}.$$

Coifman, Fefferman, 1974

Calderon-Zymund operators are bounded in $L^{p}(w)$ if and only if $w \in A_{p}$.

Aapo Laukkarinen

Another question is the dependence of the weight on the sharp constant C.

A₂ theorem, Hytönen, 2010

A Calderon-Zygmund operator T satisfies the quantitative bound

 $\|Tf\|_{L^2(w)} \leq C[w]_{A_2} \|f\|_{L^2(w)}.$

Aapo Laukkarinen

For $k \in \mathbb{Z}$, let \mathcal{D}_k be a family of cubes in \mathbb{R}^d .

Dyadic system

A family of cubes $\mathcal{D} = \bigcup_{k \in \mathbb{Z}} \mathcal{D}_k$ is a dyadic system if it has the following properties.

- For a fixed λ > 0, each D_k is a partition of ℝ^d consisting of cubes of side length 2^kλ.
- $e If Q, Q' \in \mathcal{D} then Q \cap Q' = \{ \emptyset, Q, Q' \}.$

Examples

• The standard dyadic cubes are defined by

$$\mathcal{D} \coloneqq \{2^k([0,1[^d+m): k \in \mathbb{Z}, m \in \mathbb{Z}\}.$$

• Start from $I_0 := [0, 1[$ and for $k \in \mathbb{N}$ let

$$I_{k+1} := (I_k + (-1)^{k+1} |I_k|) \cup I_k.$$

Then we get a dyadic system by translating the I_k and bisecting them arbitrarily many times. In \mathbb{R}^d we can take Cartesian products.

- Consider some property P that the cubes in \mathcal{D} may or may not satisfy.
- Let Q be the family of maximal cubes (w.r.t inclusion) that satisfy P.

Corollary 1 (Whitney covering lemma, 1934)

For an open set $\Omega\subset \mathbb{R}^d,$ there exists a set of pairwise disjoint dyadic cubes W that satisfy

• diam
$$(W) \leq dist(W, \Omega^{\complement}) \leq 4 diam(W)$$
,

- Consider some property P that the cubes in \mathcal{D} may or may not satisfy.
- Let Q be the family of maximal cubes (w.r.t inclusion) that satisfy P.

Corollary 1 (Whitney covering lemma, 1934)

For an open set $\Omega\subset \mathbb{R}^d,$ there exists a set of pairwise disjoint dyadic cubes W that satisfy

• diam
$$(W) \leq dist(W, \Omega^{\complement}) \leq 4 diam(W)$$
,

Proof: Choose maximal cubes that satisfy $W \subset \Omega$ and diam $(W) \leq dist(W, \Omega^{\complement})$.

Corollary 2 (Calderon-Zygmund decomposition, 1952)

Assume that $f \in L^1(\mathbb{R}^d)$ and let $0 < t < ||f||_{\infty}$. Then there exists a family of disjoint dyadic cubes $Q \subset \mathbb{R}^d$ such that

$$1 t < \oint_{O} |f| \le 2^{d} t,$$

$$earrow |f| \leq t \text{ a.e. in } \mathbb{R}^d \setminus \bigcup_Q Q.$$

Corollary 2 (Calderon-Zygmund decomposition, 1952)

Assume that $f \in L^1(\mathbb{R}^d)$ and let $0 < t < \|f\|_{\infty}$. Then there exists a family of disjoint dyadic cubes $Q \subset \mathbb{R}^d$ such that

$$1 \quad t < \oint_{\Omega} |f| \le 2^{d} t,$$

$$|f| \le t \text{ a.e. in } \mathbb{R}^d \setminus \bigcup_Q Q.$$

Proof: Take a maximal collection that satisfies $t < \int_{Q} |f|$.

Motivation

2 Dyadic systems

Aapo Laukkarinen

э

Sparse family of sets

A collection of sets S is γ -sparse if for every $S \in S$ there exists subsets E_S that are pairwise disjoint and $|E_S| \geq \gamma |S|$.

Sparse operator

A sparse operator is of the form

$$T^{\mathcal{S}}f = \sum_{S \in \mathcal{S}} \mathbb{1}_{S} \langle f \rangle_{S},$$

where ${\cal S}$ is a sparse family of dyadic cubes.

The sparse operator is bounded in L^p with

$$\|T^{\mathcal{S}}f\|_{L^p} \leq pp'\gamma^{-1}\|f\|_{L^p}$$

and

Cruz-Uribe-Martell-Pérez, 2010 If $w \in A_2^{\mathcal{D}}$, then the sparse operator is bounded in $L^2(w)$ with $\|T^{\mathcal{S}}f\|_{L^2(w)} \leq 4\gamma^{-1}[w]_{A_2}\|f\|_{L^2(w)}.$

General sparse domination theorem

The grand maximal operator $\mathcal{M}_{\mathcal{T}}$ is defined by

$$\mathcal{M}_T f(x) = \sup_{Q \ni x} \sup_{y \in Q} |T(\mathbb{1}_{(3Q)^{\complement}} f)(y)|.$$

Lerner's abstract domination theorem, 2015

Let T be linear or positive sublinear. Then for every boundedly supported $f \in L^1$ and $0 < \varepsilon < 1$, there is a $(1 - \varepsilon)$ -sparse family S of dyadic cubes such that

$$|Tf| \leq \frac{c_T c_d}{\varepsilon} \sum_{S \in \mathcal{S}} \mathbb{1}_S \int_{3S} |f|,$$

where c_d depends only on dimension and

$$c_{\mathcal{T}} = \|\mathcal{T}\|_{L^1 \to L^{1,\infty}} + \|\mathcal{M}_{\mathcal{T}}\|_{L^1 \to L^{1,\infty}}.$$

The family $\{3Q : Q \in D\}$ can be divided into 3^d subcollections, each of which has the same covering and nestedness properties as D.

Corollary

Under the assumptions of Lerner's abstract domination theorem there are $3^{-d}(1-\varepsilon)$ -sparse collections $S_i, i = 1, ..., 3^d$ such that

$$|Tf| \leq \frac{c_T c_d}{\varepsilon} \sum_{i=1}^{3^d} T^{\mathcal{S}_i} |f|.$$

If T is a Calderon-Zygmund operator, then T and \mathcal{M}_T map L^1 boundedly to $L^{1,\infty}$.

Thus we get

$$\|Tf\|_{L^2(w)} \leq c_T c_d[w]_{A_2} \|f\|_{L^2(w)}.$$

э

Bibliography

- Coifman, R. and Fefferman, C., *Weighted norm inequalities for maximal functions and singular integrals*, Studia Mathematica, 51: 241-250, 1974.
- Cruz-Uribe, D., Martell, J., and Pérez, C., Sharp weighted estimates for approximating dyadic operators, Electron. Res. Announc. Math. Sci., 17:12–19, 2010.
- Hytönen, T., Dyadic analysis and weights, lecture notes, 2017.
- Hytönen, T., *The sharp weighted bound for general Calderon-Zygmund operators*, Ann. of Math., 175(3):1473–1506, 2012.
- Lerner, A., *On pointwise estimates involving sparse operators*, New York J. Math., 22:341–349, 2016.
- Lerner, A. and Nazarov, F., *Intuitive dyadic calculus: the basics*, Expo. Math., 37(3):225–265, 2019.

< □ > < 同 > < 三 > <