Quasiregularly elliptic closed Riemannian manifolds

Susanna Heikkilä

University of Helsinki

DOMAST Seminar 20.10.2023

Closed Riemannian manifolds

A closed Riemannian *n*-manifold, $n \in \mathbb{N}_+$, is a compact topological *n*-manifold *M* equipped with a maximal C^{∞} -atlas and a Riemannian tensor.

Examples of closed Riemannian manifolds

- Spheres \mathbb{S}^n , real projective spaces $\mathbb{R}P^n$, and complex projective spaces $\mathbb{C}P^n$.
- Cartesian products and connected sums of closed Riemannian manifolds.

The connected sum of two topological *n*-manifolds M and N is the topological *n*-manifold M # N which is obtained by removing an *n*-dimensional ball from both M and N and then gluing along the *n*-dimensional boundary spheres.

Classification of closed Riemannian manifolds in dimensions one and two

Let M be a closed and connected Riemannian 1-manifold. Then M is diffeomorphic to \mathbb{S}^1 .

Let M be a closed and connected Riemannian 2-manifold. Then M is diffeomorphic to one of the following:

- the 2-sphere \mathbb{S}^2 ,
- the connected sum $\#^g(\mathbb{S}^1 \times \mathbb{S}^1)$ of g tori for $g \ge 1$,
- the connected sum $\#^m \mathbb{R}P^2$ of *m* real projective planes for $m \ge 1$.

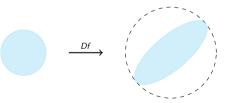
Remark: the connected sums $\#^m \mathbb{R}P^2$ are not orientable.

Quasiregularly elliptic closed Riemannian manifolds

Let M be a closed, connected, and oriented Riemannian *n*-manifold. Can M be covered by \mathbb{R}^n in a way, which distorts the geometry of \mathbb{R}^n only a uniformly bounded amount? That is, does there exist a constant $K \ge 1$ and a map $f : \mathbb{R}^n \to M$ for which

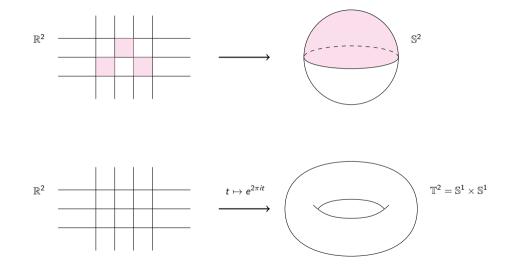
 $||Df(x)||^n \leq K \det Df(x)$ for almost every $x \in \mathbb{R}^n$?

If yes, then we say that M is *quasiregularly elliptic*.



For example, the stereographic projection $\mathbb{R}^2 \to \mathbb{S}^2$ yields that \mathbb{S}^2 is quasiregularly elliptic.

Examples for n = 2



Examples for n = 3

 \mathbb{R}^3 \mathbb{S}^3 \mathbb{R}^3 $t\mapsto e^{2\pi i t}$ $\mathbb{T}^3 = \mathbb{S}^1 imes \mathbb{S}^1 imes \mathbb{S}^1$ $\mathbb{R}^2 imes \mathbb{R} = \mathbb{R}^3$ $\mathbb{S}^2 imes \mathbb{S}^1$ ____

Classification of quasiregularly elliptic closed Riemannian manifolds in dimensions two and three

By late 1930s

The quasiregularly elliptic closed Riemannian 2-manifolds are \mathbb{S}^2 and \mathbb{T}^2 .

Early 2000s (up to conjectures late 1980s)

The quasiregularly elliptic closed Riemannian 3-manifolds are \mathbb{S}^3 , \mathbb{T}^3 , $\mathbb{S}^2 \times \mathbb{S}^1$, and their manifold quotients.

Let $M \in \{\mathbb{S}^3, \mathbb{T}^3, \mathbb{S}^2 \times \mathbb{S}^1\}$ and let \sim be an equivalence relation on M. Then the quotient space under \sim is the set $\{[x]: x \in M\}$ equipped with the topology, where a subset U is open if and only if $\{x \in M : [x] \in U\}$ is open in M.

For example, if $M = \mathbb{S}^3$ and \sim is the equivalence relation identifying antipodal points, then the quotient space is $\mathbb{R}P^3$.

Examples for n = 4

- $\mathbb{R}^4 \to \mathbb{S}^4$
- $\bullet \ \mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^4 \to \mathbb{S}^2 \times \mathbb{S}^2$
- Other (more complicated) examples?
- $\mathbb{R}^4 \to \#^2 \mathbb{S}^2 \times \mathbb{S}^2$ and $\mathbb{R}^4 \to \#^3 \mathbb{S}^2 \times \mathbb{S}^2$
- $\mathbb{R}^4 \to \#^k \mathbb{C}P^2 \#^\ell \overline{\mathbb{C}P^2}$ with $k, \ell \in \{0, 1, 2, 3\}$

Constructions by Piergallini and Zuddas in 2021 give the rest of the list.

H.–Pankka, 2023

The above list gives all the simply connected quasiregularly elliptic closed Riemannian 4-manifolds up to homeomorphism.

Thank you for your attention!