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Introduction

I am trying to show that assumptions cannot be validated using
statistic testing

In addition I show that if we claim to be able to validate
assumptions we also end up in a situation where we cannot
validate assumptions

Because of these I suggest that science would not be considered as
an objective and justified point of view by itself but rather as a
tool for ”unscientific” ideas.



Structure

First I am going to show how I earlier thought how statistical
testing worked.

After that I show you what are the wrong conclusion in that.

Finally I will show the how the same problem arises even if we
think that we can verify models by assigning them some
”usefulness” values.



Linear Model

To calculate linear model s regression coefficient ( or correlation
coefficient)

▶ 1.1. Observations independent and from the same distribution
(yi , xi ) ∈ R× R1×p)

▶ 1.2. Finite variance of Y and X

▶ 1.3. Connection of Y and X is linear Y = Xβ + ϵ

▶ 1.4 Orthogonality of X and ϵ (Cov(X , ϵ) = 0)

▶ 1.5 Var(ϵi ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Every vector can be written as a sum of orthogonal vectors. Now
because X ⊥ ϵ AND 1.3 is true we can develop an estimator for β
by using the projection of Y to Col(X). The project matrix to
Col(X) is P = X (XTX )−1XT .



Linear Model
To calculate linear model’s regression coefficient ( or correlation
coefficient)
▶ 1.1. Observations independent and from the same distribution

(yi , xi ) ∈ R× R1×p)
▶ 1.2. Finite variance of Y and X
▶ 1.3. Y = βx + ϵ
▶ 1.4 Orthogonality of X and ϵ (Cov(X , ϵ) = 0)
▶ 1.5 Var(ϵi ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Every vector can be written as a sum of orthogonal vectors. Now
because X ⊥ ϵ AND 1.3 is true we can develop an estimator for β
by using the fact that Xβ is a projection of Y to Col(X). The
project matrix for Col(X) is P = X (XTX )−1XT .

PY = X (XTX )−1XTY = X (XTX )−1XT (Xβ + ϵ) =

X (XTX )−1XTXβ + X (XTX )−1XT ϵ = Xβ + 0 = Xβ

So from here
β = (XTX )−1XTY



Projection

Every vector can be written as a sum of orthogonal vectors. In this
case Y can be written as a sum of Xβ and ϵ because they are
orthogonal. Now because orthogonality AND because 1.3 is true
we can develop an estimator for β by using the fact that Xβ is a
projection of Y to Col(X). The project matrix for Col(X) is
P = X (XTX )−1XT .

PY = X (XTX )−1XTY = X (XTX )−1XT (Xβ + ϵ) =

X (XTX )−1XTXβ + X (XTX )−1XT ϵ = Xβ + 0 = Xβ

So from here
β = (XTX )−1XTY

When using data to estimate β we write

β̂ = (XT
n Xn)

−1XT
n Yn = β + (XT

n Xn)
−1XT

n ϵn



Normality

β = (XTX )−1XTY

When using data to estimate β we write

β̂ = (XT
n Xn)

−1XT
n Yn = β + (XT

n Xn)
−1XT

n ϵn

According to Central Limit Theorem we get that the sum of rows
in ϵn converges to a normal distribution so,

XT
n ϵn → N(0,XnX

T
n σ2)



Consistency

According to Central Limit Theorem the sum of independent
random variables converges asymptotically to a normal
distribution. So,

XT
n ϵn → N(0,XnX

T
n σ2)

And then

(XT
n Xn)

−1XT
n ϵn → N(0, (XT

n Xn)
−1(XnX

T
n )−1XnX

T
n σ2) =

N(0, (XT
n Xn)

−1sigma2)



So
β̂ ∼ N(β, σ2(XT

n Xn)
−1)

Because (XT
n Xn) converges to XTX and because of full column

rank of X the matrix XTX is invertible. In addition Law of Large
Numbers state that XT

n ϵn converges to E [XT ϵ] = Cov(X , ϵ) which
we assumed to be zero. In conclusion

(XT
n Xn)

−1XT
n ϵn → (XTX )−1E [XT ϵ] = 0

So

β̂ = β + (XT
n Xn)

−1XT
n ϵn → β + (XTX )−1E [XT ϵ] = β + 0 = β

estimator β̂ is consistent.





Hypothesis testing

β̂ ∼ N(β, σ2(XT
n Xn)

−1)

▶ 1.1. Observations independent and from the same distribution
(yi , xi ) ∈ R× R1×p)

▶ 1.2. Finite variance of Y and X
▶ 1.3. Y = βx + ϵ
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)
▶ 1.5 Var(ϵi ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Now we have showed the needed assumption for a consistent
estimator for β. Now we would set null and alternative hypothesis
and choose a statistical test for it.

H0 : β = 0 H1 : β ̸= 0

The statistical test used is T-test. It calculates the probability that
the test measure is greater or equal than the test measures value in
that data set when the Null hypothesis is true.



Now we have showed the needed assumption for a consistent
estimator for β. Now we would set null and alternative hypothesis
and choose a statistical test for it.

H0 : β = 0

H1 : β ̸= 0

The statistical test used is T-test. It gives us a p-value which
calculates the probability that the test measure is greater or equal
than the test measures value in that data set when the Null
hypothesis is true.

T =
β̂j − 0

S
√
djj

,

where S2 on unbiased estimator for variance σ2 and djj is the
element from the row j and column j from the matrix (XT

n Xn)
−1.

And when all the linear model assumptions are true then T follows
T-distribution and it follows the the zero centered distribution
when βj = 0.



T =
β̂j − 0

S
√
djj

,

where S2 on unbiased estimator for variance σ2 and djj is the
element from the row j and column j from the matrix (XT

n Xn)
−1.

And when all the linear model assumptions are true then T follows
T-distribution and it follows the the zero centered distribution
when βj = 0.

Now we would choose a significance for the p-value which the test
gives us. If the test’s p-value is less than the significance level we
reject the Null hypothesis. Otherwise we stick with the Null
hypothesis.



T =
β̂j − 0

S
√
djj

,

Now we would choose a critical value for the T test measure. If
the test measure value exceeds the significance level we reject the
Null hypothesis. Otherwise we stick with the Null hypothesis.

I earlier thought that rejecting the Null hypothesis would somehow
validate the assumptions made in the model. In addition I feel that
it is thought that not rejecting the Null hypothesis somehow gives
evidence that the linearity assumptions are not truth. I will now try
to explain why I don’t think like this.



T =
β̂j − 0

S
√
djj

,

The test gives us the p-value which ”calculates the probability that
the test measure is greater or equal than the test measures value in
that data set when the Null hypothesis is true”.

p-value = P(T > t|H0 is true)

And then according to the p-value we reject or stick with the Null
hypothesis. So this procedure could be written as

If H0 TRUE and p-value > critical p-value
→ stick with H0

→ no validation to linearity assumption



And then according to the p-value we reject or stick with the Null
hypothesis. So this procedure could be written as

If H0 TRUE and p-value > critical p-value
→ stick with H0

→ no validation to linearity assumption

Because all the assumptions are needed to create a consistent
estimator for β when H0 is true then all the assumption have to be
true also. Even if one assumptions (or alternative assumptions for
1.1.,1.2 and 1.5) does not hold β̂ is not a consistent estimator and
so the T-test measure does not follow a T-distribution and the
p-value does not give reliable results.



Because all the assumptions are needed to create a consistent
estimator for β when H0 is true then all the assumption have to be
true also. Even if one assumptions does not hold β̂ is not a
consistent estimator and so the T-test measure does not follow a
T-distribution and the p-value does not give reliable results.

Because of this the previous formula should be written as

If all the assumptions are true (including linearity) and
β = 0 and p-value > critical p-value
→ stick with H0

→ no validation to linearity assumption



Because of this the previous formula should be written as

If all the assumptions are true (including linearity) TRUE and
β = 0 and p-value > critical p-value
→ stick with H0

→ no validation to model assumptions (including linearity)

However it is not logical to assume linearity and then conclude that
we should not validate linearity. Linearity is assumed true so
concluding that it would not be truth would be mathematically
incorrect.



Verifying Models
I have tried to show that we cannot verify the assumptions using
statistical testing. But what would happen if we said that we
could?

We could also verify the assumptions by using some property of
the model as the criteria. For example, a model created using
some assumptions could minimize the squared error of the model’s
predictions and the observations better than other models. If the p
value of the regression coefficient β̂ is zero we then would conclude
that the linear model’s assumptions are correct over the
assumptions of the model without the linear connection (Y = ϵ)

And similarly in this situation when we would compare two model’s
abilities to minimize the squared error (accuracies) we would use
variance analysis to determine the difference of the accuracies of
the models. The model’ assumptions with a statistically significant
higher accuracy compared to the other would be then be
considered as truth.



Verifying Models

We could also verify the assumptions by using some property of
the model as the criteria. For example, a model created using
some assumptions could minimize the squared error of the model’s
predictions and the observations better than other models. If the p
value of the regression coefficient β̂ is zero we then would conclude
that the linear model’s assumptions are correct over the
assumptions of the model without the linear connection (Y = ϵ).

We would however need an other criteria to verify the criteria we
used to verify the assumptions. For example we could use the
feeling of happiness to choose minimizing squared error over
minimizing the absolute error of the predictions and observations.
Even so using another criteria for example the feeling of joy would
also yield results and without an even other criteria we could not
justify the using of happiness criteria over joy criteria.



Example

We would however need an other criteria to verify the criteria we
used to verify the assumptions. For example we could use the
feeling of happiness to choose minimizing squared error over
minimizing the absolute error of the predictions and observations.
Even so using another criteria for example the feeling of joy would
also yield results and without an even other criteria we could not
justify the using of happiness criteria over joy criteria.

Example: Scientist try to conclude should they use squared error or
absolute error as the minimizing criteria. They choose to calculate
a happiness index [0, 100] from each country which uses squared
error and which uses absolute error. Then they use variance
analysis to compare the index values of the countries which use ϵ2

and which use |ϵ| as the minimization criteria.



Example

Example: Scientist try to conclude should they use absolute error
or squared error as the minimizing criteria. They choose to
calculate a happiness index [0, 100] from each country which uses
absolute error and which uses squared error .

In this study they code the countries which use absolute error as
”1” and countries with squared error as ”2”. So they will have n1
(Y11 . . .Y1n1) data points from countries which use absolute error
and n2 (Y21 . . .Y2n2)from countries which use squared error. The
mean of the ”1” is µ1 and ”2” is µ2. They use variance analysis
which is a type of linear model to compare the distributions of ”1”
and ”2”.



Assumptions for this model are as in the linear model

▶ 1.1. Observations independent and from the same distribution
(yi , xi ) ∈ R× R1×p)

▶ 1.2. Finite variance of Y (and X)

▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)

▶ 1.5 Var(ϵji ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Model written in matrix form

Y11
...

Y1n1

Y21
...

Y2n2


=



1 0
...

...
1 0
0 1
...

...
0 1


[
µ1

µ2

]
=



ϵ11
...

ϵ1n1
ϵ21
...

ϵ2n2





Assumptions for this model are as in the linear model
▶ 1.1. Observations independent and from the same distribution

(yi , xi ) ∈ Rn × Rn×p)
▶ 1.2. Finite variance of Y (and X)
▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)
▶ 1.5 Var(ϵji ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Again like in the previous Linear Model example we create a
estimator for µ using the projection to Col(X).

µ̂ = (XT
n Xn)

−1XT
n Yn = µ+ (XT

n Xn)
−1XT

n ϵn (1.2,1.3,1.6)

Again the µ̂ is normally distributed (1.1,1.5)

µ̂ = µ+(XT
n Xn)

−1XT
n ϵn → N(µ, (XT

n Xn)
−1(XnX

T
n )−1XnX

T
n σ2) =

N(µ, (XT
n Xn)

−1sigma2)

and consistent (1.4)

µ̂ = µ+ (XT
n Xn)

−1XT
n ϵn → µ+ (XTX )−1E [XT ϵ] = µ+ 0 = µ



Assumptions for this model are as in the linear model
▶ 1.1. Observations independent and from the same distribution

(yi , xi ) ∈ Rn × Rn×p)
▶ 1.2. Finite variance of Y (and X)
▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)
▶ 1.5 Var(ϵji ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

and consistent (1.1,1.2,1.4)

µ̂ = µ+ (XT
n Xn)

−1XT
n ϵn → µ+ (XTX )−1E [XT ϵ] = µ+ 0 = µ

This time we would create a test measure from the difference of µ1

and µ2 and we know that the difference of normal distribution is
normally distributed

µ̂1 − µ̂2 ∼ N(µ1 − µ2,
σ2

n2
+

σ2

n2
)

Then our Hypothesis would be

H0 : µ1 = µ2 H1 : µ1 ̸= µ2



Assumptions for this model are as in the linear model

▶ 1.1. Observations independent and from the same distribution
(yi , xi ) ∈ Rn × Rn×p)

▶ 1.2. Finite variance of Y (and X)

▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)

▶ 1.5 Var(ϵji ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

and consistent (1.1,1.2,1.4)
Then our Hypothesis would be

H0 : µ1 = µ2 H1 : µ1 ̸= µ2

Again the T-test measure will be T-distributed because µ1 − µ2 is
normalli distributed.

Then we would calculate the T-test value and compare the p-value
to the significance level. If the p-value exceeds the significance
level we would reject the H0 and otherwise we stick with the H0.



Assumptions for this model are as in the linear model
▶ 1.1. Observations independent and from the same distribution

(yi , xi ) ∈ Rn × Rn×p)
▶ 1.2. Finite variance of Y (and X)
▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)
▶ 1.5 Var(ϵji ) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

and consistent (1.1,1.2,1.4)
Then our Hypothesis would be

H0 : µ1 = µ2 H1 : µ1 ̸= µ2

The Scientist wanted to conclude that which minimization criteria
(absolute error or squared error) yields more happiness. So they
want to make a choice according to the result that is there a
difference between the happiness indexes or not. However the
chain of deduction remains similar than in the previous linear
model that you cannot calculate the difference without assuming
that there is a difference. Because of this the result will not yield
an answer whether or not the happiness levels differ or not.



Scientists want to make a choice according to the result that is
there a difference between the happiness indexes or not. However
the chain of deduction remains similar than in the previous linear
model that you cannot calculate the difference without assuming
that there is a difference. Because of this the result will not yield
an answer whether or not the happiness levels differ or not.

Again the p value of this test will give a probability for the test
measure to be as great as it is or greater assuming that the Null
hypothesis is true. Because we need all the assumptions to be true
in order to make a reliable test the test cannot give us information
about the assumptions.

If all the assumptions are true (including linearity) and
µ = 0 and p-value > critical p-value
→ stick with H0

→ no validation to model assumptions (including linearity)



My idea was to show that we need to make ”unscientific”
assumptions first and then use science to that. For example we
assume that using squared error gives us the truth and then use
science to minimize squared error.

The ”unscientific” name is misleading because in order to talk
about unscience we need to define science and in that high level
we have not yet defined it.

In my opinion this interpretation of science is most consistent
because then we don’t have any issues with unprovable
assumptions.



Thank you



▶ 1.1. Observations independent and from the same distribution
(yi , xi ) ∈ Rn × Rn×p)

▶ 1.2. Finite variance of Y (and X)
▶ 1.3. Yji = µj + ϵji
▶ 1.4 Orthogonality of X and e (Cov(X , e) = 0)
▶ 1.5 Var(ϵj i) = σ2

▶ 1.6 If X ∈ Rn×p then r(X)=p

Model written in matrix form

Y11
...

Y1n1

Y21
...

Y2n2


=



1 0
...

...
1 0
0 1
...

...
0 1


[
µ1

µ2

]
=



ϵ11
...

ϵ1n1
ϵ21
...

ϵ2n2


And then because

µ̂i ∼ N(µi ,
σ2

n1
)

µ̂1 − µ̂2 ∼ N(µ1 − µ2,
σ2

n2
+

σ2

n2
)



▶ 1.1. Observations independent

▶ 1.2. Finite variance of Y (and X)

▶ 1.3. Yji = µj + ϵji
▶ 1.3 and 1.2 Orthogonality of X and e (Cov(X , e) = 0)

µ̂1 − µ̂2 ∼ N(µ1 − µ2,
σ2

n1
+

σ2

n2
)

And then we have the Null hypothesis as H0 : µ1 = µ2 and we can
calculate the p value as before in the previous linear model.

Again regardless what the p-value is we have already assumed that
the distribution of happiness index values differ. We can only
calculate the difference of the values if we assume that there is a
difference. Hence even with the happiness criteria we cannot
conclude if the squared error would yield different results that the
absolute error criteria without assuming that they do.



Sample frame title

It is good to go through the situations where it looks like that we
are able to give support to the assumptions.

▶ 1.1. if β̂ = 0 → Y ̸= βx + ϵ is FALSE

▶ 1.2 what happens when β̂ statistically significant but linearity
and orthogonality are false

▶ 1.3. Ambigiousity of models if we say that we can estimate
the correctness of the assumptions



1.1. if β̂ = 0 → Y ̸= βx + ϵ is FALSE

The statistical test used is T-test. It calculates the probability that
the test measure is greater or equal than the test measures value in
that data set when the Null hypothesis is true.

Null hypothesis for the jthcomponent is that βj = c

T =
β̂j − c

S
√
djj

,

where S2 on unbiased estimator for variance σ2 and djj is the
element from the row j and column j from the matrix (XT

n Xn)
−1.

And when all the linear model assumptions are true then T follows
T-distribution and it follows the the zero centered distribution
when βj = 0.



1.1. if β̂ = 0 → Y ̸= βx + ϵ is FALSE

T =
β̂j − c

S
√
djj

,

where S2 on unbiased estimator for variance σ2 and djj is the
element from the row j and column j from the matrix (XT

n Xn)
−1.

We are not testing the assumptions but whether or not the value
of the β̂ is close to zero. All the other assumptions have to be true
in the Null hypothesis because otherwise the β̂ could not be used
to estimate β and the test would not work.

Maybe more intuitive way of thinking is that because of our
assumptions we know that X has a linear connection to Y and we
are checking is the connection so close to zero that a random
fluctuation could easily produce a similar change.



Sample frame title

▶ 1.2 what happens when β̂ statistically significant but linearity
and orthogonality are false

If X is not orthogonal to ϵ and X does not have a linear
connection, but the observations are independent the β̂ still
converges to something. We can write

β̂ → β̄ n → ∞

Then we can alter the previous assumptions and write like this

▶ 1.1. Observations independent and from the same distribution

▶ 1.2. Finite variance of Y and X

▶ 1.3. Y = β̄x + ϵ2

▶ 1.3 and 1.2 Orthogonality of X and ϵ2 (Cov(X , ϵ2) = 0)

It is clear that the assumptions are different so we are not looking
at the same thing as in the beginning so again we are not
investigating the linearity Y = βx + ϵ but something else.


