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Proof of Theorem 1. In the geometric case, the result of Theorem 1 is given in Meyn and
Tweedie (2009, Thm 15.0.1). In the polynomial case, the result can be obtained by combining
Theorem 2.8 of Douc et al. (2004) with the discussion in their Section 2.3 (see also Jarner and
Roberts (2002)). In the subexponential case, the function � is concave and increasing as long
as v0 is chosen large enough (cf. Douc et al. (2008, p. 243, the paragraph following Assumption
2)). Again, the result can be obtained by combining Theorem 2.8 of Douc et al. (2004) with the
discussion in their Section 2.3; note also that the two functions �(v) = c(v + v0)/[ln(v + v0)]↵

and �0(v) = cv/[ln(v)]↵ both lead to the same rate function r�(n) given in Douc et al. (2004,
p. 1365, line 6). ⌅

Proof of Theorem 2. First note that from equation (16), Assumptions 1 and 2(a), and
Theorem 2.2(ii) of Cline and Pu (1998) (see also Example 2.1 of that paper) it follows that the
Markov chain yt is a  -irreducible and aperiodic T -chain. Moreover, as in the proof of Lemma
1 of Lu (1998) it can be seen that  is the Lebesque measure and using Theorem 6.2.5 of Meyn
and Tweedie (2009) we can conclude that all compact sets of B(Rp) are petite (and in this case
small, as shown by Theorem 5.5.7 of Meyn and Tweedie (2009)). The same also holds for the
Markov chain yt in the case p = 1.

In what follows, we first consider the case p � 2 and consider the case p = 1 at the end of
the proof.

Part (i): In this case we have ⇢ > 0 and b3 = 0 ^ (2 � ⇢) 2 (0, 1); for brevity, the notation
b3 will be used. The choice of b1 and b2 will be discussed later. We can make use of results in
the proof of Theorem 3.3, part (i), in Douc et al. (2004, Sec. 3.3). Write the function V (x) as

V (x) = 1
2 exp

�
b1 |z1(x)|b3

 
+ 1

2 exp
�
b2 kz2(x)kb3⇤

 def
= V1(z1(x)) + V2(z2(x)), (30)

and consider E [V (y1) | y0 = x], the conditional expectation in (9). Note that z(y1) appearing
in V (y1) can be expressed as (see (19))

z(y1) =


z1(y1)
z2(y1)

�
= Ay1 =


0 00

p�1

◆p�1 ⇧1

� 
z1(y0)
z2(y0)

�
+g(y0)◆p+"1◆p =


g(y0) + "1

⇧1z2(y0) + z1(y0)◆p�1

�
.
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In what follows, we usually drop the argument from z(x) and its components and write, for
example, z2 instead of z2(x). Now (dropping the argument from z(x))

E [V (y1) | y0 = x] = E
⇥
1
2 exp

�
b1 |g(x) + "1|b3

 ⇤
+ 1

2 exp
�
b2 k⇧1z2 + z1◆p�1kb3⇤

 

= E[V1(g(x) + "1)] + V2(⇧1z2 + z1◆p�1).

Defining V✏(x) = exp{b1 |✏(x)x|b3} we bound the expectation on the right hand side as follows:

E [V1 (g(x) + "1)] = E
⇥
1
2 exp

�
b1 |g(x)� g(z1) + g(z1) + "1|b3

 ⇤

 exp
�
b1 |g(x)� g(z1)|b3

 
E
⇥
1
2 exp

�
b1 |g(z1) + "1|b3

 ⇤

 V✏(x)E [V1 (g(z1) + "1)] ,

where the first inequality is due to the triangle inequality and the fact that b3 2 (0, 1), and the
second inequality follows from the definition of the function g and inequality (13) in Assumption
1(ii). Thus, we can bound the conditional expectation E [V (y1) | y0 = x] as

E [V (y1) | y0 = x]  V✏(x)E [V1 (g(z1) + "1)] + V2 (⇧1z2 + z1◆p�1) . (31)

Step 1: Bounding E [V1 (g(z1) + "1)] in (31). We first note that the arguments used by
Douc et al. (2004) to obtain their inequality (3.14) can be used to justify that, for |z1| � M0,

V1 (g(z1))� V1 (z1)  (�b1rb3 |z1|b3�⇢ + 1
2b

2
1r

2
b
2
3 |z1|

2(b3�⇢))V1(z1).

Moreover, repeating the arguments in Douc et al. (2004) between their (3.15)–(3.19) it can be
shown that, for |z1| large (which, due to our Assumption 1(ii), also implies that |g(z1)| is large)
and some c > 0,

E [V1 (g(z1) + "1)]� V1 (g(z1))  {1
2b

2
1b

2
3 + c |z1|�b3}E["21V1("1)] |z1|2b3�2

V1(z1),

so that, for |z1| large,

E [V1 (g(z1) + "1)]� V1 (g(z1))  b
2
1b

2
3E["21V1("1)] |z1|2b3�2

V1(z1);

note that due to Assumption 2(a) and the choice of b3, the condition E
⇥
|"1|2 V1("1)

⇤
< 1 can

be achieved by choosing the value of b1 small enough. From the above inequalities it follows
that, for |z1| large,

E [V1 (g(z1) + "1)]  V1(z1) + k(z1)V1(z1), (32)

where
k(z1) = �b1rb3 |z1|b3�⇢ + 1

2b
2
1r

2
b
2
3 |z1|

2(b3�⇢) + b
2
1b

2
3E["21V1("1)] |z1|2b3�2

. (33)

Next we obtain an upper bound for k(z1). Note that we necessarily have b3 � ⇢ < 0 and
2b3 � 2  b3 � ⇢ with equality if and only if b3 = 2 � ⇢ (these follow from ⇢ > 0 and
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b3 = 0 ^ (2� ⇢)). First consider the case 2b3 � 2 = b3 � ⇢ so that b3 = 2� ⇢ and

k(z1) = �
�
r � b1b3E["21V1("1)]

�
b1b3 |z1|b3�⇢ + 1

2b
2
1r

2
b
2
3 |z1|

2(b3�⇢)
.

As b3�⇢ < 0, the inequality 1
2b1r

2
b3 |z1|b3�⇢  1

2✏1 holds for all large enough |z1| and with ✏1 > 0

which can be chosen as close to zero as desired. Moreover, as b3 and E ["21V1("1)] are positive
and here fixed, we can choose the value of b1 small enough so that b1b3E["21V1("1)]  1

2✏1 holds.
Hence, for |z1| large, k(z1)  �

⇥
r � 1

2✏1 �
1
2✏1

⇤
b1b3 |z1|b3�⇢ and here ✏1 can be chosen small

enough so that r � ✏1 > 0 holds. Now consider the case 2b3 � 2 < b3 � ⇢ (so that b3 < 2� ⇢).
Write k(z1) as

k(z1) = �(r � 1
2b1r

2
b3 |z1|b3�⇢ � b1b3E["21V1("1)] |z1|(2b3�2)�(b3�⇢))b1b3 |z1|b3�⇢

and note that 1
2b1r

2
b3 |z1|b3�⇢ + b1b3E["21V1("1)] |z1|(2b3�2)�(b3�⇢)  ✏2 holds with 0 < ✏2 < r for

all large enough |z1| so that the bound k(z1)  �(r � ✏2)b1b3 |z1|b3�⇢ is obtained. To combine
the two cases, note that the arguments above hold if ✏1 and ✏2 are replaced with ✏3 = ✏1 ^ ✏2.
Thus, defining the positive constant !1 as !1 = r � ✏3 we obtain, for |z1| large,

k(z1)  �!1b1b3 |z1|b3�⇢

(cf. Douc et al. (2004, top of p. 1373)). Combining this with the inequality (32) we obtain

E [V1 (g(z1) + "1)]  (1� !1b1b3 |z1|b3�⇢)V1(z1).

Step 2: Bounding V✏(x)E [V1 (g(z1) + "1)] in (31). Using the bound just obtained, bound
the first term on the right hand side of (31) as

V✏(x)E [V1 (g(z1) + "1)]  exp
�
b1 |✏(x)x|b3

 
(1� !1b1b3 |z1|b3�⇢)V1(z1)

= 1
2(1� !1b1b3 |z1|b3�⇢) exp

�
b1 |z1|b3 + b1 |✏(x)x|b3

 
.

For all |z1| large enough, 1 � !1b1b3 |z1|b3�⇢ 2 (0, 1) and the same holds true for k1(z1)
def
=

1� 1
2!1b1b3 |z1|b3�⇢. Using the inequality (1� u)↵  1� ↵u (0  u,↵  1) we thus have

1� !1b1b3 |z1|b3�⇢ =
�
1� !1b1b3 |z1|b3�⇢�1/2�1� !1b1b3 |z1|b3�⇢�1/2  k1(z1)

2
.

Furthermore, as ln (k1(z1)) = ln(1� 1
2!1b1b3 |z1|b3�⇢)  �1

2!1b1b3 |z1|b3�⇢ it follows that k1(z1) =
exp {ln (k1(z1))}  exp

�
�1

2!1b1b3 |z1|b3�⇢ and we can write

V✏(x)E [V1 (g(z1) + "1)]  1
2k1(z1) exp{

�
1� 1

2!1b3 |z1|�⇢�
b1 |z1|b3 + b1 |✏(x)x|b3}.

Consider the argument of the exponential function on the right hand side of the above
inequality. As z = (z1, z2) = Ax, the equivalence of vector norms in Rp and straightforward
calculations show that, for some c⇤ > 0,

|✏(x)x| =
��✏(x)A�1z

��  c⇤ |✏(x)| |z1|+ c⇤ |✏(x)| kz2k⇤ = |✏1(x)| |z1|+ |✏1(x)| kz2k⇤ ,
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where ✏1(x) = c⇤✏(x). Hence, as Assumption 1(ii) holds with d = ⇢/b3, we have |✏1(x)| =
o(|x|�⇢/b3) and

|✏(x)x|b3  o(|x|�⇢) |z1|b3 + o(|x|�⇢) kz2kb3⇤ ,

so that, for all |z1| large (implying that |z| and hence that |x| is large7; see the discussion above
Theorem 1),
�
1� 1

2!1b3 |z1|�⇢�
b1 |z1|b3 + b1 |✏(x)x|b3 

�
1� 1

2!1b3 |z1|�⇢ + o(|x|�⇢)
�
b1 |z1|b3 + o(|x|�⇢)b1 kz2kb3⇤


�
1� !2b3 |z1|�⇢�

b1 |z1|b3 + o(|x|�⇢)b1 kz2kb3⇤ ,

where 0 < !2 <
1
2!1. Thus, we can conclude that, for all |z1| large,

V✏ (x)E [V1 (g(z1) + "1)]  1
2k1(z1) exp

�
(1� !2b3 |z1|�⇢)b1 |z1|b3 + o(|x|�⇢)b1 kz2kb3⇤

 
.

Next define ⌧1(z1) = 1�!2b3 |z1|�⇢ and ⌧2(z1) = 1� ⌧1(z1), and note that ⌧1(z1) 2 (0, 1) for
any |z1| large. By the preceding discussion, we then have, for all |z1| large,

V✏(x)E [V1 (g(z1) + "1)]  1
2k1(z1) exp

�
⌧1(z1)b1 |z1|b3 + ⌧2(z1)⌧2(z1)

�1
o(|x|�⇢)b1 kz2kb3⇤

 

 ⌧1(z1)

2
k1(z1) exp

�
b1 |z1|b3

 
+
⌧2(z1)

2
k1(z1) exp

�
⌧2(z1)

�1
o(|x|�⇢)b1 kz2kb3⇤

 

 1
2k1(z1) exp

�
b1 |z1|b3

 
+ 1

2 exp
�
⌧2(z1)

�1
o(|x|�⇢) kz2kb3⇤

 

= k1(z1)V1(z1) +
1
2 exp

�
o(1) kz2kb3⇤

 
.

Here the second inequality is justified by the convexity of the exponential function and the
third one follows because ⌧1(z1) 2 (0, 1) and k1(z1) 2 (0, 1) can be assumed. The last equality
is due to the definition of V1 and the definition of ⌧2(z1) which implies

⌧2(z1)
�1
o(|x|�⇢) = (!2b3)

�1 |z1|⇢ o(|x|�⇢)  c
⇢ (!2b3)

�1 |x|⇢ o(|x|�⇢) = o(1),

where the inequality holds because |z1|  |z|  c |x| (see footnote 7) and where o(1) ! 0 as
|x| ! 1.

It will be convenient to modify the preceding upper bound of V✏(x)E [V1 (g(z1) + "1)]. To
this end, denote ↵ = ⇢/b3�1 (> 0) and write b1 |z1|b3�⇢ = b

⇢/b3
1

�
b1 |z1|b3

��↵ � b
⇢/b3
1 (1 + lnV1(z1))

�↵

where the inequality is based on the definition of V1(z1) (also note that ln(12) ⇡ �0.6931). Thus,
by the definition of k1(z1) we have,

k1(z1)  1� 1
2!1b3b

⇢/b3
1 (1 + lnV1(z1))

�↵
.

Using this upper bound and the definition

�1 (V1(z1)) =
1
2!1b3b

⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1) (> 0), (34)

yields, for |z1| large and for a small enough choice of b1, the following bound for the first term
7Due to the nonsingularity of the matrix A, there exists a positive constant c such that c�1 |z|  |x|  c |z|,

so that |x| ! 1 if and only if |z| ! 1.
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on the right hand side of (31):

V✏(x)E [V1 (g(z1) + "1)]  V1(z1)� �1 (V1(z1)) +
1
2 exp

�
o(1) kz2kb3⇤

 
.

To state this more formally, we can find b1 = b̃1 < �0, and M1 � M0 such that the above
inequality holds for |z1| > M1. Moreover, as in Douc et al. (2004, p. 1373) these choices can
be done in such a way that, for some (finite) constant M1, and for all z1,

V✏(x)E [V1 (g(z1) + "1)]  V1(z1)� �1 (V1(z1)) +
1
2 exp

�
o(1) kz2kb3⇤

 
+M11C1(z1), (35)

where C1 = {z1 2 R : |z1|  M1}.

Step 3: Bounding V2 (⇧1z2 + z1◆p�1) in (31). Here we assume that the choice of b1 is fixed
to the value b̃1 specified above. Recall that V2(⇧1z2 + z1◆p�1) =

1
2 exp

�
b2 k⇧1z2 + z1◆p�1kb3⇤

 

and note that

b2 k⇧1z2 + z1◆p�1kb3⇤  b2

�
k⇧1z2k⇤ + kz1◆p�1k⇤

�b3  b2⌘
b3 kz2kb3⇤ + b2 k◆p�1kb3⇤ |z1|b3 ,

where we have made use of the fact b3 2 (0, 1) and Assumption 1(i) which implies that k⇧1k⇤ 
⌘ for some ⌘ < 1 (see the discussion following equation (19)).

Let ⌧1 2 (0, 1) and ⌧2 = 1 � ⌧1 be such that ⌧2 2 (⌘b3 , 1), and denote b2,1 = b2 k◆p�1kb3⇤ /⌧1

and b2,2 = b2/⌧2. Then,

V2

�
⇧1z2 + z1◆p�1

�
 1

2 exp
�
b2⌘

b3 kz2kb3⇤ + b2 k◆p�1kb3⇤ |z1|b3
 

= 1
2 exp

�
⌧2b2,2⌘

b3 kz2kb3⇤ + ⌧1b2,1 |z1|b3
 

 ⌧1
2 exp

�
b2,1 |z1|b3

 
+ ⌧2

2 exp
�
b2,2⌘

b3 kz2kb3⇤
 

 1
2 exp

�
b2,1 |z1|b3

 
+ 1

2 exp
�
b2,2⌘

b3 kz2kb3⇤
 

def
= V2,1(z1) + V2,2(z2),

where the second inequality is justified by the convexity of the exponential function. Now,
as ⌧2 2 (⌘b3 , 1), we have b2,2⌘

b3 = b2⌘
b3/⌧2 < b2, and we choose the value of b2 so small that

b2,1 = b2 k◆p�1kb3⇤ /⌧1 < b1 = b̃1 with b̃1 as fixed above.
We next bound V2,1(z1) and V2,2(z2). For the former, write V2,1(z1) = exp

�
� (b1 � b2,1) |z1|b3

 
V1(z1)

and use the facts lnV1(z1) = ln(12) + b1 |z1|b3 , ↵ = ⇢/b3 � 1 > 0, and b1 � b2,1 > 0 to obtain

V2,1(z1) =
(1 + lnV1(z1))

↵
b3b

⇢/b3
1

b3b
⇢/b3
1 exp

�
(b1 � b2,1) |z1|b3

 (1 + lnV1(z1))
�↵

V1(z1)  1
2✏4b3b

⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1),

where the inequality holds for any ✏4 > 0 as long as |z1| is large enough. Using the definition of
�1 (V1(z1)) in (34) this implies a bound for ��1 (V1(z1)) + V2,1(z1) which will be needed later:

��1 (V1(z1)) + V2,1(z1)  �1
2!1b3b

⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1)

+ 1
2✏4b3b

⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1) +M11C1(z1)

= �!b3b⇢/b31 (1 + lnV1(z1))
�↵

V1(z1) +M11C1(z1), (36)
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where ! = 1
2(!1 � ✏4) and, as !1 > 0 holds for (fixed) b1 = b̃1, we can choose ✏4 so small that

! > 0 holds. Note that here the last expression provides a bound for ��1 (V1(z1)) + V2,1(z1)

that holds for all z1 (although this may require redefining the set C1 and the value of the
constant M1 which appear also in the upper bound obtained earlier for E [V1 (g(z1) + "1)]).
Denoting ✏ = ✏3 + ✏4 and using the definition of !1 (given at the end of Step 1) we therefore
have ! = 1

2(r � ✏).
Now consider V2,2(z2) =

1
2 exp{b2,2⌘

b3 kz2kb3⇤ } and recall that b2,2⌘
b3 < b2. Using the defi-

nition V2(z2) =
1
2 exp{b2 kz2kb3⇤ } we have, for some ⌘2 2 (0, 1) and kz2k⇤ bounded away from

zero,

V2,2(z2) = V2(z2)
exp{b2,2⌘b3 kz2kb3⇤ }
exp{b2 kz2kb3⇤ }

= V2(z2) exp{�
�
b2 � b2,2⌘

b3
�
kz2kb3⇤ }  ⌘2V2(z2),

and furthermore
V2

�
⇧1z2 + z1◆p�1

�
 V2,1(z1) + ⌘2V2(z2),

where the bound obtained above for V2,1(z1) has been omitted but it will be used below.

Step 4: Bounding E [V (y1) |y0 = x ] in (31). Using (35) and the preceding inequality
obtained for V2

�
⇧1z2 + z1◆p�1

�
we can now write

E [V (y1) |y0 = x ]  V1(z1)� �1 (V1(z1)) +
1
2 exp

�
o(1) kz2kb3⇤

 
+M11C1(z1)

+ V2,1(z1) + V2(z2)� (1� ⌘2)V2(z2).

As |z2|  |z|  c |x| (see footnote 7), the term o(1) on the right hand side converges to zero as
|z2| ! 1. Thus, as V2(z2) =

1
2 exp{b2 kz2kb3⇤ }, we have, for |z2| large,

1
2 exp

�
o(1) kz2kb3⇤

 
� (1� ⌘2)V2(z2) =

⇥
exp

�
[o(1)� b2] kz2kb3⇤

 
� (1� ⌘2)

⇤
1
2 exp

�
b2 kz2kb3⇤

 

 �⌘3V2(z2),

where ⌘3 2 (0, 1). Hence,

V2(z2) +
1
2 exp

�
o(1) kz2kb3⇤

 
� (1� ⌘2)V2(z2)  V2(z2)� ⌘3V2(z2) +M21C2(z2),

where C2 = {z2 2 Rp�1 : |z2|  M2} and M2 and M2 are some finite constants. Using this
inequality and the bound in (36) we can bound E [V (y1) |y0 = x ] as follows:

E [V (y1) |y0 = x ]  V1(z1)� !b3b
⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1)

+ V2(z2)� ⌘3V2(z2) + 2M11C1(z1) +M21C2(z2).

We still need to modify the right hand side of the above inequality to a form assumed in
Condition D, and for simplicity we write this inequality as

E [V (y1) |y0 = x ]  V1(z1)� !b3b
⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1) + V2(z2)� ⌘3V2(z2) + L,
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where L � 2M1 +M2. Next note that V (x) � V1(z1) � 1/2 (see (30)) so that

0 < (1 + lnV (x))�↵  (1 + lnV1(z1))
�↵  (1 + ln(1/2))�↵

.

Using these inequalities twice and defining c� = !b3b
⇢/b3
1 ^ ⌘3

�
1 + ln 1

2

�↵ (> 0) we have

� !b3b
⇢/b3
1 (1 + lnV1(z1))

�↵
V1(z1)� ⌘3V2(z2)

 �!b3b⇢/b31 (1 + lnV (x))�↵
V1(z1)� ⌘3 (1 + ln(1/2))↵ (1 + lnV (x))�↵

V2(z2)

 �c� (1 + lnV (x))�↵
V (x).

Denoting h(x) = c� (1 + lnV (x))�↵ we therefore obtain

E [V (y1) |y0 = x ]  (1� h(x))V (x) + L. (37)

Because V (x) � 1 and �↵ < 0, we have 0 < h(x)  c� and h(x) ! 0, as |x| ! 1. Thus, for
all |x| large enough, h(x)  1, and therefore

(1� h(x))V (x) + L = (1� h(x))
1
2 V (x) · (1� h(x))

1
2 (1 + L/[(1� h(x))V (x)])


�
1� 1

2h(x)
�
V (x) · (1� h(x))

1
2 (1 + L/[(1� h(x))V (x)])


�
1� 1

2h(x)
�
V (x)

for all |x| large enough, where the first inequality is based on the inequality (1� x)a  1� ax

(which holds for a, x 2 [0, 1]) and the second inequality is justified by showing that the inequality

H(x)
def
= (1� h(x))

1
2 (1 + L/[(1� h(x))V (x)]) < 1

holds for all |x| large enough. To show this, note first that

H(x) = (1� h(x))
1
2 + L/[(1� h(x))1/2 V (x)]  1� 1

2h(x) + L/[(1� h(x))1/2 V (x)],

so that it suffices to show that, for all |x| large enough, the right hand side of the last inequality is
smaller than one or, equivalently, that L <

1
2h(x) (1� h(x))

1
2 V (x). This holds for all |x| large

enough due to the definitions of V (x) and h(x) which imply that, as |x| ! 1, V (x) ! 1 at
an exponential rate (see (30)) whereas h(x) ! 0 at a logarithmic rate (see the above definition
of h(x)).

We can therefore write inequality (37), for all |x| large enough, as

E [V (y1) |y0 = x ] 
�
1� 1

2h(x)
�
V (x).

As the right hand side is bounded when x belongs to any compact set, this further implies
that there exist positive constants M and b such that for C = {x 2 Rp : |x|  M} and for all
x 2 Rp

E [V (y1) |y0 = x ]  V (x)� �1 (V (x)) + b1C(x), (38)
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where
�1 (V (x)) = 1

2h(x)V (x) = 1
2c� (1 + lnV (x))�↵

V (x). (39)

Now note that we can always find positive constants v0 and c such that the function �(v) =

c(v+v0)(ln(v+v0))�↵ is a concave increasing differentiable function for all v � 1 and such that

�1(v) =
1
2c�v(1 + ln(v))�↵ � c(v + v0)(ln(v + v0))

�↵ = �(v)

for large enough v. Therefore, potentially redefining M , b, and C,

E [V (y1) |y0 = x ]  V (x)� � (V (x)) + b1C(x).

Thus, we have verified Condition D (with ↵ = ⇢/b3 � 1). The result follows from Theorem 1.

Part (ii). Now ⇢ = 0 and, as in the proof of Theorem 3.3(ii) in Douc et al. (2004, p. 1373),
many results in the proof of case ⇢ > 0 can be used. Again, we choose b3 = 0^ (2�⇢), noting
that now b3 = 0 and that the notation 0 will be used below instead of b3. Also, the function
V (x) = V1(z1) + V2(z2) is as in the case ⇢ > 0, and we need to bound the two terms in (31).

Step 1: Bounding E [V1 (g(z1) + "1)] in (31). Exactly as in Part (i), Step 1, it again holds
that, for |z1| > M0,

V1 (g(z1))� V1(z1) 
�
�b1r0 |z1|0�⇢ + 1

2b
2
1r

2

2
0 |z1|

2(0�⇢)�
V1(z1)

=
�
�b1r0 +

1
2b

2
1r

2

2
0

�
V1(z1)

and, for large |z1|,

E [V1 (g(z1) + "1)]� V1 (g(z1))  b
2
1

2
0E

⇥
"
2
1V1("1)

⇤
|z1|20�2

V1(z1).

Hence, for large |z1|,

E [V1 (g(z1) + "1)]  V1(z1) + k(z1)V1(z1),

where now
k(z1) = �b1r0 +

1
2b

2
1r

2

2
0 + b

2
1

2
0E

⇥
"
2
1V1("1)

⇤
|z1|20�2

.

Due to Assumption 2(a) and the choice of b3, the condition E
⇥
|"1|2 V1("1)

⇤
< 1 can be achieved

by choosing the value of b1 small enough or, specifically, assuming b1 = b̃1 < �0. Furthermore,
as 0 2 (0, 1], by choosing the value of b1 small enough the function k(z1) 2 (�1, 0) and is
bounded away from �1 and 0 for any |z1| large enough. Therefore, for some �1 2 (0, 1),

E [V1 (g(z1) + "1)]  V1(z1)� �1V1(z1)

for all sufficiently large |z1|.

Step 2: Bounding V✏(x)E [V1 (g(z1) + "1)] in (31). For the first term on the right hand side
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of (31) we obtain, for |z1| large,

V✏(x)E [V1 (g(z1) + "1)]  exp {b1 |✏(x)x|0} (1��1)V1(z1) =
1
2(1��1) exp {b1 |✏(x)x|

0 + b1 |z1|0} .

Write 1� �1 = (1� �1)1/2(1� �1)1/2  (1� 1
2�1)

2 and note that 1� 1
2�1 = exp

�
ln
�
1� 1

2�1

� 


exp
�
�1

2�1

 
to obtain

V✏(x)E [V1 (g(z1) + "1)]  1
2

�
1� 1

2�1

�
exp

�
�1

2�1 + b1 |z1|0 + b1 |✏(x)x|0
 
.

As Assumption 1(ii.a) now holds with d = 1, we have |✏(x)| = o(|x|�1) and

b1 |✏(x)x|0  o(|x|�0)b1 |z1|0 + o(|x|�0)b1 kz2k0

⇤

(cf. the similar inequality in the proof of case ⇢ > 0, Step 2). Therefore, for |z1| large,

�1
2�1 + b1 |z1|0 + b1 |✏(x)x|0  (1� �1(z1)) b1 |z1|0 + o(|x|�0)b1 kz2k0

⇤ ,

where
�1(z1) =

�1

2b1 |z1|0
+ o(|x|�0) =

�1 + o(1)

2b1 |z1|0

with �1(z1) 2 (0, 1) and �1(z1)�1
o(|x|�0) = o(1) holding (here, as well as above, the term

o(1) is obtained because |z1|0
o(|x|�0) = o(1) by arguments similar to those used in the case

⇢ > 0, Step 2).
Thus, we can conclude that, for |z1| large,

V✏(x)E [V1 (g(z1) + "1)]

 1
2

�
1� 1

2�1

�
exp

�
(1� �1(z1)) b1 |z1|0 + �1(z1)�1(z1)

�1
o(|x|�0)b1 kz2k0

⇤
 

 1
2

�
1� 1

2�1

�
(1� �1(z1)) exp {b1 |z1|0}+ 1

2

�
1� 1

2�1

�
�1(z1) exp

�
�1(z1)

�1
o(|x|�0)b1 kz2k0

⇤
 

 1
2

�
1� 1

2�1

�
exp {b1 |z1|0}+ 1

2 exp {o(1)b1 kz2k0

⇤ } ,

where the second inequality is due to the convexity of the exponential function. To state this
more formally, we can find M1 � M0 and some (finite) M1, such that

V✏(x)E [V1 (g(z1) + "1)]  V1(z1)� 1
2�1V1(z1) +

1
2 exp {o(1)b1 kz2k0

⇤ }+M11C1(z1),

where �1 2 (0, 1) and C1 = {z1 2 R : |z1|  M1} (cf. the proof of part (ii) in Douc et al. (2004,
p. 1373)). Moreover, as in case ⇢ > 0 (the beginning of Step 4), the term o(1) on the right
hand side converges to zero as |z2| ! 1.

Step 3: Bounding V2 (⇧1z2 + z1◆p�1) in (31). As in the the proof of case ⇢ > 0, Step 3,
assume that the value of b1 is fixed to b̃1 specified above. Repeating the arguments in the proof
of case ⇢ > 0, Step 3, we first obtain

V2

�
⇧z2 + z1◆p�1

�
 1

2 exp {b2,1 |z1|
0}+ 1

2 exp {b2,2⌘
0 kz2k0

⇤ } def
= V2,1(z1) + V2,2(z2),

where b2,1 = b2 k◆p�1k0

⇤ /⌧1 and b2,2 = b2/⌧2 with ⌧1 2 (0, 1) and ⌧2 = 1 � ⌧1. Also, as in case
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⇢ > 0, we can choose ⌧2 2 (⌘0 , 1) so that b2,2⌘0 = b2⌘
0/⌧2 < b2, and the value of b2 so small

that b2,1 = b2 k◆p�1k0

⇤ /⌧1 < b1 = b̃1 with b̃1 as fixed above.
We next bound V2,1(z1) and V2,2(z2). Arguments similar to those used in the corresponding

proof of case ⇢ > 0, Step 3, apply but the bound obtained for V2,1(z1) simplifies. Specifically,

V2,1(z1)  ✏V1(z1) and V2,2(z2)  ⌘2V2(z2),

where the first inequality holds for any ✏ > 0 as long as |z1| is large enough and the second
inequality holds for some ⌘2 2 (0, 1) and kz2k⇤ bounded away from zero. These inequalities
can be written as

V2,1(z1)  ✏V1(z1) +M11C1(z1) and V2,2(z2)  V2(z2)� (1� ⌘2)V2(z2) +M21C2(z2),

where, for simplicity, we have assumed that the term M11C1(z1) can be the same as at the end
of Step 2 and where C2 = {z2 2 Rp�1 : |z2|  M2} with M2 and M2 some positive and finite
constants. Thus, we can conclude that

V2

�
⇧z2 + z1◆p�1

�
 ✏V1(z1) + V2(z2)� (1� ⌘2)V2(z2) +M11C1(z1) +M21C2(z2).

Step 4: Bounding E [V (y1) |y0 = x ] in (31). The bounds obtained for V✏(x)E [V1 (g(z1) + "1)]

and V2

�
⇧z2 + z1◆p�1

�
in Steps 2 and 3, respectively, yield

E [V (y1) |y0 = x ] = V✏(x)E [V1 (g(z1) + "1)] + V2

�
⇧z2 + z1◆p�1

�

 V1(z1)� 1
2�1V1(z1) +

1
2 exp {o(1)b1 kz2k0

⇤ }+ ✏V1(z1)

+ V2(z2)� (1� ⌘2)V2(z2) + 2M11C1(z1) +M21C2(z2).

As the value of ✏ > 0 can be made as close to zero as desired (by only choosing |z1| large enough
and independently of choices made for any other parameters), we can assume that ✏ < 1

2�1 so
that

�1
2�1V1(z1) + ✏V1(z1)  ��2V1(z1)

holds with some �2 2 (0, 1). Moreover, as in the proof of case ⇢ > 0, Step 4,

1
2 exp{o(1) kz2kb3⇤ }� (1� ⌘2)V2(z2)  �⌘3V2(z2),

⌘3 2 (0, 1). Thus, defining �̃ = �2 ^ ⌘3 2 (0, 1) and L � 2M1 +M2 we find that

E [V (y1) |y0 = x ]  V1(z1(x))� �2V1(z1(x)) + V2(z2(x))� ⌘3V2(z2(x)) + L,

 V (x)� �̃V (x) + L.

We can write the above inequality as

E [V (y1) |y0 = x ]  (1� �̃)
1
2V (x) · (1� �̃)

1
2
�
1 + L/[(1� �̃)V (x)]

�
,

from which it follows that, for all |x| large enough, E [V (y1) |y0 = x ]  (1��̃) 1
2V (x), implying
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that there exist positive constants M and b such that, for C = {x 2 Rp : |x|  M},

E [V (y1) |y0 = x ]  (1� �̃)
1
2V (x) + b1C(x).

Defining � = 1 � (1 � �̃)
1
2 2 (0, 1) we can conclude that Condition D holds with �(v) = �v

and therefore Theorem 1(i) shows that the Markov chain yt is geometrically ergodic and the
convergence (8) holds with f(x) = V (x) = V1(z1(x)) + V2(z2(x)).

Case p = 1: When p = 1 we have x = x1 = u and we simply write x for any of these. In
this case, model (16) reduces to yt = yt�1 + g̃(yt�1) + "t, Assumption 1(i) becomes redundant,
Assumption 1(ii.a) is automatically satisfied with g(x) = x + g̃(x), ✏(x) = 0, and d redundant
(as long as the condition |g(x)| ! 1 as |x| ! 1 still holds), and Assumptions 1(ii.b) and 2
are as in the case p � 2. In other words, the model can be written as yt = g(yt�1) + "t with
g satisfying Assumption 1(ii.b) as well as |g(x)| ! 1 as |x| ! 1. This also means that the
assumptions of Theorem 3.3 in Douc et al. (2004) are satisfied except for the continuity of g
required in their Assumption 3.4. However, in our case this assumption is not needed because
the boundedness of g on compact subsets of R implied by our Assumption 1(ii) actually suffices.

First consider the case ⇢ > 0. Proceeding as in the proof of Theorem 3.3(i) of Douc
et al. (2004) we can conclude that there exist positive constants M and b such that, for C =

{x 2 R : |x|  M} and for all x 2 R,

E [V (y1) | y0 = x ]  V (x)� �1 (V (x)) + b1C(x), (40)

where �1(V (x)) = c̃� (1 + lnV (x))�↵
V (x) with ↵ = ⇢/b3 � 1 > 0 and some c̃� > 0 (see the

top of p. 1373 of Douc et al. (2004) and note also our additional assumption |g(x)| ! 1 as
|x| ! 1). Comparing this with (38) and (39) at the end of the proof of part (i) shows that we
can continue as therein and conclude that Condition D is satisfied with V (x) = exp{b1 |x|b3}
and �(v) = c(v + v0)(ln(v + v0))�↵ (for some c, v0 > 0 and ↵ = ⇢/b3 � 1 > 0). The result of
part (i) now follows from Theorem 1(ii).

Now consider the case ⇢ = 0. As in the proof of Theorem 3.3(ii) of Douc et al. (2004) we
can conclude that (40) holds with �1 (V (x)) = �V (x) and some � > 0, and with M , b, and C

redefined (see the middle of p. 1373 of Douc et al. (2004) and note again the above-mentioned
additional assumption). The result of part (ii) now follows from Theorem 1(i). ⌅

Proof of Theorem 3. First note that our Assumption 2(b) implies Assumptions (NSS 1)
and (NSS 4) of Fort and Moulines (2003). Also, in the same way as in the proof of Theorem
2 we can show that the Markov chain yt is a  -irreducible and aperiodic T -chain with  the
Lebesgue measure, and that all compact sets of B(Rp) are petite. This, in turn, implies that
Assumption (NSS 2) of Fort and Moulines (2003) holds. These facts together with Assumption
1 are used below to verify Assumption (NSS 3) of Fort and Moulines (2003) which enables us
to apply Lemma 3 of that paper.

As V (x) = 1 + |z1|s0 + s1 kz2k↵s0⇤ we have (cf. the beginning of the proof of Theorem 2)

E [V (y1) |y0 = x ] = 1 + E [|g(x) + "1|s0 ] + s1 k⇧1z2 + z1◆p�1k↵s0⇤ . (41)
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In this case it appears convenient to start with bounding the latter term on the right hand side.

Step 1: Bounding s1 k⇧1z2 + z1◆p�1k↵s0⇤ in (41). First note that ↵ = 1 � ⇢/s0 2 (0, 1)

because 0 < ⇢ < s0 is assumed. We consider separately the cases where ↵s0  1 and ↵s0 > 1,
and show that there exist constants ⌘0 2 (0, 1) and s1 > 0 such that

s1 k⇧1z2 + z1◆p�1k↵s0⇤  s1 kz2k↵s0⇤ � ⌘0s1 kz2k↵s0⇤ + s1 |z1|↵s0 (42)

holds for both ↵s0  1 and ↵s0 > 1. Moreover, the value of s1 can be chosen as close to zero
as desired.

First consider the case ↵s0  1 and assume that s1 < 1. Denoting s̃1 = s1 k◆p�1k↵s0⇤ we
obtain (cf. the proof of Theorem 2, the beginning of Step 3)

s1 k⇧1z2 + z1◆p�1k↵s0⇤  s1⌘
↵s0 kz2k↵s0⇤ + s̃1 |z1|↵s0 = s1 kz2k↵s0⇤ � ⌘1s1 kz2k↵s0⇤ + s̃1 |z1|↵s0 ,

where ⌘ 2 (0, 1) by assumption and ⌘1 = 1 � ⌘
↵s0 2 (0, 1) which shows that inequality (42)

holds with ⌘0 = ⌘1 and s1 = s̃1. Also, the value of s̃1 can be made as close to zero as desired
by choosing s1 small enough.

Now consider the case ↵s0 > 1. Here s1 < 1 is still assumed and s0 > 1 must hold because
↵ 2 (0, 1). Write

s1 k⇧1z2 + z1◆p�1k↵s0⇤ = s1

�
k⇧1z2 + z1◆p�1k↵⇤

�s0

 s1

�
k⇧1z2k↵⇤ + k◆p�1k↵⇤ |z1|

↵�s0


�
s
1/s0
1 ⌘

↵ kz2k↵⇤ + s
1/s0
1 k◆p�1k↵⇤ |z1|

↵�s0
,

where ⌘ 2 (0, 1) again holds by assumption. Let ⌧1 2 (0, 1) and ⌧2 = 1 � ⌧1, and denote
s1,1 = s

1/s0
1 k◆p�1k↵⇤ /⌧1 and s1,2 = s

1/s0
1 /⌧2. Then,

s1 k⇧1z2 + z1◆p�1k↵s0⇤  (⌧1s1,1 |z1|↵ + ⌧2s1,2⌘
↵ kz2k↵⇤ )

s0

 ⌧1s
s0
1,1 |z1|

↵s0 + ⌧2s
s0
1,2⌘

↵s0 kz2k↵s0⇤

 s
s0
1,1 |z1|

↵s0 + s
s0
1,2⌘

↵s0 kz2k↵s0⇤ ,

where the second inequality is justified by the convexity of the function |x| 7! |x|s0 for s0 > 1.
Next, as ⌘↵ < 1, we can choose ⌧2 2 (⌘↵, 1) so that s

s0
1,2⌘

↵s0 = s1⌘
↵s0/⌧

s0
2 < s1. Denoting

⌘2 = 1� (⌘↵/⌧2)
s0 we have ⌘2 2 (0, 1) and

s
s0
1,2⌘

↵s0 kz2k↵s0⇤ = s1 kz2k↵s0⇤ � s1 (1� ⌘
↵s0/⌧

s0
2 ) kz2k↵s0⇤ = s1 kz2k↵s0⇤ � ⌘2s1 kz2k↵s0⇤ ,

and we can conclude that

s1 k⇧1z2 + z1◆p�1k↵s0⇤  s1 kz2k↵s0⇤ � ⌘2s1 kz2k↵s0⇤ + s
s0
1,1 |z1|

↵s0
.

Thus, inequality (42) holds with ⌘0 = ⌘2 and s1 = s
s0
1,1. Above we fixed the value of ⌧2, and

hence also the value of ⌧1, but we are still free to choose the value of s1 and make s
s0
1,1 =

s1 k◆p�1k↵s0⇤ /⌧
s0
1 < 1 as close to zero as desired by choosing s1 small enough. From now on,

we assume that ⌘0 = ⌘1 ^ ⌘2 and s1 = s̃1 _ s
s0
1,1 so that inequality (42) applies irrespective of
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whether ↵s0  1 or ↵s0 > 1, and the value of s1 can be chosen arbitrarily close to zero.

Step 2: Bounding E [|g(x) + "1|s0 ] in (41). Consider the cases s0 < 1 and s0 � 1 separately.
When s0 < 1, the definition of the function g, the triangle inequality, and Assumption 1(ii.a)
yield

E [|g(x) + "1|s0 ] = E [|g(x)� g(z1) + g(z1) + "1|s0 ]
 E [|g(x)� g(z1)|s0 + |g(z1) + "1|s0 ]
 |✏(x)x|s0 + E [|g(z1) + "1|s0 ] . (43)

When s0 � 1, we can use Minkowski’s inequality and obtain

(E [|g(x) + "1|s0 ])1/s0 = (E [|g(x)� g(z1) + g(z1) + "1|s0 ])1/s0

 |g(x)� g(z1)|+ (E [|g(z1) + "1|s0 ])1/s0

 |✏(x)x|+ (E [|g(z1) + "1|s0 ])1/s0 . (44)

The next step is to bound the expectation E [|g(z1) + "1|s0 ]. Assumption 1(ii.b) ensures
that the function g satisfies the conditions in Assumption (NSS 3) of Fort and Moulines (2003)
which (together with other assumptions of the theorem) implies that we can use Lemma 3 of
that paper. Thus, as ↵s0 = s0 � ⇢, inequality (36) in that lemma shows that

E [|g(z1) + "1|s0 ]  |z1|s0 � � |z1|↵s0 (1 + ✏̃(z1)) ,

where ✏̃(z1) ! 0 as |z1| ! 1 and � > 0 (to see this, note that the cases (i)–(iii) in our Theorem
3 correspond to the cases (i)–(iii) in Lemma 3 of Fort and Moulines (2003) so that the result
is obtained with � = s0r in cases (i) and (ii) and with � = s0r � 1

2s0(s0 � 1)E["21], which is
positive by assumption, in case (iii)). Thus, the above inequality implies that, for |z1| large,

E [|g(z1) + "1|s0 ]  |z1|s0 � �̃ |z1|↵s0 , (45)

where �̃ > 0 and, without loss of generality, we can assume that �̃  1 also holds. Note that
this inequality holds for both s0 < 1 and s0 � 1; these two cases will be treated separately
below.

Case s0 < 1. First recall from the proof of Theorem 2, Step 2, that

|✏(x)x|  |✏1(x)| |z1|+ |✏1(x)| kz2k⇤ ,

where ✏1(x) = c⇤✏(x), c⇤ > 0. Using (43), (45), and the assumption s0 < 1, we find that, for
|z1| large,

E [|g(x) + "1|s0 ]  |z1|s0 � �̃ |z1|↵s0 + |✏(x)x|s0

 |z1|s0 � �̃ |z1|↵s0 + |✏1(x)|s0 |z1|s0 + |✏1(x)|s0 kz2ks0⇤
 |z1|s0 � �̃ |z1|↵s0 + |✏1(x)|s0 |z1|⇢ |z1|↵s0 + |✏1(x)|s0 kz2k⇢⇤ kz2k↵s0⇤ ,

where the last inequality follows because ↵ = 1 � ⇢/s0 so that ↵s0 = s0 � ⇢. As |✏1(x)| =
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o(|x|�⇢/s0) by assumption, we have, for |z1| large, |✏1(x)|s0 |z1|⇢ = o(|x|�⇢) |z1|⇢ < �̃, and thus

E [|g(x) + "1|s0 ]  |z1|s0 � �̃1 |z1|↵s0 + o(1) kz2k↵s0⇤ , (46)

where �̃1 2 (0, 1) and o(1) ! 0 as |x| ! 1 (the upper bound of �̃1 follows because �̃  1 was
assumed above and the term o(1) is obtained as in the proof of Theorem 2, Step 2).

Case s0 � 1. When s0 � 1, inequalities (44) and (45) imply that, for |z1| large,

(E [|g(x) + "1|s0 ])1/s0  (E [|g(z1) + "1|s0 ])1/s0 + |✏(x)x|
 (|z1|s0 � �̃ |z1|↵s0)1/s0 + |✏1(x)| |z1|+ |✏1(x)| kz2k⇤
= |z1| (1� �̃ |z1|�⇢)1/s0 + |✏1(x)| |z1|+ |✏1(x)| kz2k⇤

 |z1|
⇣
1� �̃

s0
|z1|�⇢

⌘
+ |✏1(x)| |z1|+ |✏1(x)| kz2k⇤ .

Here the equality is again due to the definition of ↵ which implies ↵s0 = s0 � ⇢, and the last
inequality follows because (1�u)a  1� au holds for all 0  u, a  1. As |✏1(x)| = o(|x|�⇢) by
assumption, we have, for |z1| large enough, |✏1(x)| |z1| = |✏1(x)| |z1|⇢ |z1|1�⇢

<
�̃
s0
|z1|1�⇢, and

(E [|g(x) + "1|s0 ])1/s0  |z1|
�
1� �̃2 |z1|�⇢�+ |✏1(x)| kz2k⇤ , (47)

where �̃2 2 (0, 1). As the term 1� �̃2 |z1|�⇢ in (47) is positive, we can write

1� �̃2 |z1|�⇢ =
�
1� �̃2 |z1|�⇢�1/2�1� �̃2 |z1|�⇢�1/2 

�
1� 1

2 �̃2 |z1|
�⇢�2

,

and arguments similar to those in the proof of Theorem 2, Step 2, can be used. Thus, we define
⌧1(z1) = 1� 1

2 �̃2 |z1|
�⇢ and ⌧2(z1) = 1� ⌧1(z1), and express inequality (47) as

(E [|g(x) + "1|s0 ])1/s0  ⌧1(z1) |z1|
�
1� 1

2 �̃2 |z1|
�⇢�+ ⌧2(z1)⌧2(z1)

�1 |✏1(x)| kz2k⇤ .

From this we can conclude that, for |z1| large,

E [|g(x) + "1|s0 ] 
⇥
⌧1(z1) |z1|

�
1� 1

2 �̃2 |z1|
�⇢�+ ⌧2(z1)⌧2(z1)

�1 |✏1(x)| kz2k⇤
⇤s0

 ⌧1(z1) |z1|s0
�
1� 1

2 �̃2 |z1|
�⇢�s0 + ⌧2(z1)

�
⌧2(z1)

�1 |✏1(x)| kz2k⇤
�s0

 |z1|s0
�
1� 1

2 �̃2 |z1|
�⇢�s0 + ⌧2(z1)

�
⌧2(z1)

�1 |✏1(x)| kz2k⇤
�s0

 |z1|s0
�
1� 1

2 �̃2 |z1|
�⇢�+ ⌧2(z1)

�
⌧2(z1)

�1 |✏1(x)| kz2k⇤
�s0

.

Here the second inequality is due to the convexity of the function |x| 7! |x|s0 , s0 � 1, and the
last one follows because s0 � 1. By the definition of ⌧2(z1), ⌧2(z1)�1 |✏1(x)| = (2/�̃2) |z1|⇢ |✏1(x)|,
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so that, for some positive constants A1 and A2,

⌧2(z1)
�
⌧2(z1)

�1 |✏1(x)| kz2k⇤
�s0  A1 |z1|�⇢ |z1|s0⇢ |✏1(x)|s0 kz2ks0⇤

= A1 |z1|s0⇢�⇢ |✏1(x)|s0 kz2k⇢⇤ kz2k↵s0⇤

 A2 |x|s0⇢�⇢ |✏1(x)|s0 |x|⇢ kz2k↵s0⇤

= A2 |x|s0⇢ |✏1(x)|s0 kz2k↵s0⇤

= o(1) kz2k↵s0⇤ .

Here the first equation is again due to the definition of ↵ and the last one follows because
|✏1(x)| = o(|x|�⇢) by assumption. The second inequality follows because |z1|  |z|  c |x| and
similarly with |z1| replaced by |z2| (see footnote 7). Hence, as ↵s0 = s0 � ⇢, we find that, for
|z1| large,

E [|g(x) + "1|s0 ]  |z1|s0 � 1
2 �̃2 |z1|

↵s0 + o(1) kz2k↵s0⇤ , (48)

where o(1) ! 0 as |x| ! 1.
To combine the cases s0 < 1 and s0 � 1, set �̃0 = �̃1 ^ 1

2 �̃2 2 (0, 1) and conclude from (46)
and (48) that, for |z1| large,

E [|g(x) + "1|s0 ]  |z1|s0 � �̃0 |z1|↵s0 + o(1) kz2k↵s0⇤ , (49)

where o(1) ! 0 as |x| ! 1.

Step 3: Bounding (41). First conclude from inequalities (42) and (49) that, for |z1| large,

E [V (y1) |y0 = x ]  1 + |z1|s0 � �̃0 |z1|↵s0 + s1 |z1|↵s0

+ s1 kz2k↵s0⇤ � ⌘0s1 kz2k↵s0⇤ + o(1) kz2k↵s0⇤ .

Furthermore, we noted earlier that the value of s1, and hence also the value of s1, can be chosen
as close to zero as desired. Therefore, for |z2| large enough and for some ⌘ 2 (0, 1),

�⌘0s1 kz2k↵s0⇤ + o(1) kz2k↵s0⇤  �⌘ kz2k↵s0⇤  �⌘ kz2k↵
2s0

⇤ ,

where the replacement of kz2k↵s0⇤ with kz2k↵
2s0

⇤ is justified because ↵ 2 (0, 1) (this replacement
is needed below). Also, as we can assume that the value of s1 is so small that �̃0 � s1 > 0,
we have ��̃0 |z1|↵s0 + s1 |z1|↵s0 = �� |z1|↵s0 where � 2 (0, 1) (the upper bound follows because
�̃0 < 1, as noted above). Thus, we can conclude that, for |z1| and |z2| large,

E [V (y1) |y0 = x ]  1 + |z1|s0 + s1 kz2k↵s0⇤ � � |z1|↵s0 � ⌘ kz2k↵
2s0

⇤ .

Now, let kz2k⇤ be so large that ⌘ kz2k↵
2s0

⇤ � c > 1. Then,

�⌘ kz2k↵
2s0

⇤ = �1� ⌘ kz2k↵
2s0

⇤
�
1� 1/(⌘ kz2k↵

2s0
⇤ )

�
 �1� ⌘ (1� 1/c) kz2k↵

2s0
⇤ ,

where ⌘ (1� 1/c) 2 (0, 1] and, setting c = � ^ (⌘ (1� 1/c)), we have c 2 (0, 1] and

�� |z1|↵s0 � ⌘ kz2k↵
2s0

⇤  �1� c |z1|↵s0 � c kz2k↵
2s0

⇤  �c
�
1 + |z1|↵s0 + kz2k↵

2s0
⇤

�
.
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Next note that

�c
�
1 + |z1|↵s0 + kz2k↵

2s0
⇤

�
 �c (1 + |z1|s0 + kz2k↵s0⇤ )↵  �c (1 + |z1|s0 + s1 kz2k↵s0⇤ )↵ ,

where the first inequality follows because ↵ 2 (0, 1) and the second one because s1 < 1 by
assumption. This implies that

�� |z1|↵s0 � ⌘ kz2k↵
2s0

⇤  �c (1 + |z1|s0 + s1 kz2k↵s0⇤ )↵ .

By the preceding discussion we can find positive (and finite) constants Mi and M i (i = 1, 2)

such that

E [V (y1) |y0 = x ]  1 + |z1|s0 + s1 kz2k↵s0⇤ � c (1 + |z1|s0 + s1 kz2k↵s0⇤ )↵

+M11C1(z1) +M21C2(z2), (50)

where C1 = {z1 2 R : |z1|  M1} and C2 = {z2 2 Rp�1 : |z2|  M2}.

Step 4: Completing the proof. Using the definition V (x) = 1 + |z1(x)|s0 + s1 kz2(x)k↵s0⇤
and letting L � M1 +M2, we obtain from (50) that

E [V (y1) |y0 = x ]  V (x)� cV (x)↵ + L = (1� h(x))V (x) + L,

where h(x) = cV (x)↵�1.
As ↵ 2 (0, 1) and c 2 (0, 1], we have 0 < h(x)  c and h(x) ! 0, as |x| ! 1. Com-

paring the above inequality with inequality (37) (see the proof of Theorem 2 (Part (i), Step
4)) and the properties of the function h(x) shows that we can verify Condition D with ar-
guments similar to those in the aforementioned proof. Specifically, we need to show that
L <

1
2h(x) (1� h(x))

1
2 V (x) holds for all |x| large enough. That this holds is seen by noting

that (see the definition of h(x) above)

1
2h(x) (1� h(x))

1
2 V (x) = 1

2c
�
1� cV (x)↵�1

� 1
2 V (x)↵,

where V (x)↵ ! 1 and V (x)↵�1 ! 0, as |x| ! 1.
Hence, as in the proof of Theorem 2 (Part (i), Step 4) we can conclude that there exist

positive constants M and b such that, for C = {x 2 Rp : |x|  M},

E [V (y1) |y0 = x ]  V (x)� �1 (V (x)) + b1C(x),

where �1 (v) = 1
2h(x)V (x) = 1

2cv
↵. This implies that Condition D holds with � = �1. The

result follows from Theorem 1 (note that ↵ = 1� ⇢/s0 so that 1� ↵ = ⇢/s0).

Case p = 1: As in the corresponding proof of Theorem 2, we have x = x1 = u, so we simply
write x for any of these and note the following: Model (16) reduces to yt = yt�1 + g̃(yt�1) + "t,
Assumption 1(i) becomes redundant, Assumption 1(ii.a) is automatically satisfied with g(x) =

x + g̃(x), ✏(x) = 0, and d redundant (as long as the condition |g(x)| ! 1 as |x| ! 1 still
holds), and Assumptions 1(ii.b) and 2 are as when p � 2. In other words, the model can be
written as yt = g(yt�1) + "t with g satisfying Assumption 1(ii.b) as well as |g(x)| ! 1 as
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|x| ! 1. Note further that now z1(x) reduces to x1 and we simply write x in place of either
of these. Also, due to the choice g(x) = x+ g̃(x) we have g(x) = g(x).

We go through the changes needed in the proof of Theorem 3 in case p � 2. Note that the
equality V (x) = 1 + |z1|s0 + s1 kz2k↵s0⇤ in case p � 2 reduces to V (x) = 1 + |x|s0 by setting
s1 = 0. The beginning of the proof until (41) remains valid with (41) reducing to

E [V (y1) | y0 = x ] = 1 + E [|g(x) + "1|s0 ] . (51)

Step 1 can be omitted as the term considered therein equals zero. In Step 2, setting ✏(x) = 0

inequalities (43) and (44) remain valid, and so does (45). The numbered inequalities (46)–(49)
all hold but in all of them the last term is set to zero. In Step 3, the first inequality holds with
s1, s̄1, and the o(1) term all set to zero. In the following arguments, set ⌘̄ = 0 and �̄ = �̃0.
Now, some slight changes are needed. Set c̄ = �̄/2 2 (0, 1) and assume |x| is so large that
|x|↵s0 � 1/c̄. This implies that

�� |x|↵s0  �1� c |x|↵s0  �c
�
1 + |x|↵s0

�
 �c (1 + |x|s0)↵

similarly to the corresponding derivations in Step 3. Therefore, inequality (50) holds with s1 and
M2 set to zero. Step 4 remains valid, so that the stated (f, r)-ergodicity result is obtained from
Theorem 1 with f = V

1��(1�↵) = V
1��⇢/s0 = (1 + |x|s0)1��⇢/s0 and � 2 [1, 1/(1� ↵)]. Denoting,

for brevity, � = 1� �⇢/s0 2 (0, 1] note that 1 + |x|s0��⇢ = 1 + (|x|s0)� = {[1 + (|x|s0)�]1/�}� 
{C[1 + |x|s0 ]}� for some finite positive C (due to Loève’s cr-inequality) so that the (f, r)-
ergodicity with f(x) = 1 + |x|s0��⇢ follows. ⌅

Proof of Corollary to Theorem 3. First consider the case p � 2. We find from the proof
of Theorem 3 (the beginning of Step 3) that, for |z1| large,

E [V (y1) |y0 = x ]  1 + |z1|s0 � (�̃0 � s1) |z1|↵s0 + s1 kz2k↵s0⇤ � (⌘0s1 � o(1)) kz2k↵s0⇤ ,

where s1 is so small that �̃0�s1 > 0 holds and o(1) ! 0 as |x| ! 1. Hence, defining ⌘ 2 (0, 1),
M11C1(z1), and M21C2(z2) as in the proof of Theorem 3 (Step 3), we have

E [V (y1) |y0 = x ]  1 + |z1|s0 + s1 kz2k↵s0⇤ � (�̃0 � s1) |z1|↵s0 � ⌘ kz2k↵s0⇤

+M11C1(z1) +M21C2(z2),

and setting c1 = (�̃0 � s1) ^ ⌘,

E [V (y1) |y0 = x ]  1 + |z1|s0 + s1 kz2k↵s0⇤ � c1 (|z1|↵s0 + kz2k↵s0⇤ ) +M11C1(z1) +M21C2(z2).

As V (x) = 1 + |z1(x)|s0 + s1 kz2(x)k↵s0⇤ and ↵s0 = s0 � ⇢ we can write this, for all x, as

E [V (y1) |y0 = x ]  V (x)� c1

�
|z1(x)|s0�⇢ + kz2(x)ks0�⇢

⇤
�
+M11C1(z1(x)) +M21C2(z2(x)).

From Theorem 14.3.7 of Meyn and Tweedie (2009) we now find that ⇡
�
|z1(x)|s0�⇢ + kz2(x)ks0�⇢

⇤
�
<

1 and, by the equivalence of vector norms in Rp, ⇡
�
|z1(x)|s0�⇢ + |z2(x)|s0�⇢�

< 1 also
holds. Furthermore, as |z1(x)|s0�⇢ + |z2(x)|s0�⇢ � c2 (|z1(x)|+ |z2(x)|)s0�⇢ � c2 |z(x)|s0�⇢
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and |z(x)|s0�⇢ = |Ax|s0�⇢ � c3 |x|s0�⇢ for some c2, c3 2 (0,1) (that depend on s0 and ⇢), it
follows that ⇡

�
|x|s0�⇢�

< 1.
In the case p = 1, the above arguments hold if one sets s1 = 0, c1 = �̃0, and drops all the

terms related to z2. ⌅
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