SUBGEOMETRIC ERGODICITY AND β-MIXING: SUPPLEMENTARY MATERIAL

MIKA MEITZ,* AND

PENTTI SAIKKONEN,** University of Helsinki

Proof of Theorem 1. We use Theorem 2.5(ii) of [2] to prove (a). To this end, first note that, due to the assumed irreducibility and aperiodicity, the petite set C in Condition Drift-G is small ([1], Theorem 5.5.7). We first show that, for some $r>1$,

$$
\sup _{x \in C} \mathbb{E}_{x}\left[r^{\tau_{C}}\right]<\infty ;
$$

cf. Theorem 2.5(ii) of [2]. We proceed as in the proof of Theorem 15.2.5 in [1] and, for the β in Condition Drift-G, choose an $r \in\left(1,(1-\beta)^{-1}\right)$ and set $\varepsilon=r^{-1}-(1-\beta)$ so that $0<\varepsilon<\beta$ and ε is the solution to $r=(1-\beta+\varepsilon)^{-1}$. Now we may reorganize the drift condition as

$$
\mathbb{E}\left[V\left(X_{1}\right) \mid X_{0}=x\right] \leq r^{-1} V(x)-\varepsilon V(x)+b \mathbf{1}_{C}(x), \quad x \in \mathrm{X} .
$$

Define $Z_{k}=r^{k} V\left(X_{k}\right), k=0,1,2, \ldots$, so that $\mathbb{E}\left[Z_{k+1} \mid \mathcal{F}_{0}^{k}\right]=r^{k+1} \mathbb{E}\left[V\left(X_{k+1}\right) \mid\right.$ $\left.\mathcal{F}_{0}^{k}\right]$ and thus
$\mathbb{E}\left[Z_{k+1} \mid \mathcal{F}_{0}^{k}\right] \leq r^{k+1}\left\{r^{-1} V\left(X_{k}\right)-\varepsilon V\left(X_{k}\right)+b \mathbf{1}_{C}\left(X_{k}\right)\right\}=Z_{k}-\varepsilon r^{k+1} V\left(X_{k}\right)+r^{k+1} b \mathbf{1}_{C}\left(X_{k}\right)$.
Applying Proposition 11.3.2 of [1] with $f_{k}(x)=\varepsilon r^{k+1} V(x), s_{k}(x)=b r^{k+1} \mathbf{1}_{C}(x)$, and stopping time τ_{C} we obtain
$\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1} \varepsilon r^{k+1} V\left(X_{k}\right)\right] \leq V(x)+\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1} b r^{k+1} \mathbf{1}_{C}\left(X_{k}\right)\right]=V(x)+b r \mathbf{1}_{C}(x)$,

[^0]because $\mathbf{1}_{C}\left(X_{1}\right)=\cdots=\mathbf{1}_{C}\left(X_{\tau_{C}-1}\right)=0$ by the definition of τ_{C}. Multiplying by $\varepsilon^{-1} r^{-1}$ and noting that $V(\cdot) \geq 1$, we obtain, for some finite constants c_{1}, c_{2},
$$
\mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1} r^{k}\right] \leq \mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1} r^{k} V\left(X_{k}\right)\right] \leq c_{1} V(x)+c_{2} .
$$

As $\sup _{x \in C} V(x)<\infty, \sup _{x \in C} \mathbb{E}_{x}\left[\sum_{k=0}^{\tau_{C}-1} r^{k}\right]<\infty$ is obtained. Using $\sum_{k=0}^{\tau_{C}-1} r^{k}=$ $\left(r^{\tau_{C}}-1\right) /(r-1)$, this is equivalent to $\sup _{x \in C} \mathbb{E}_{x}\left[r^{\tau_{C}}\right]<\infty$ as desired; note that we also have, for some finite constants $c_{3}, c_{4}, \mathbb{E}_{x}\left[r^{\tau_{C}}\right] \leq c_{3} V(x)+c_{4}$. Now Theorem 2.5(ii) of [2] implies that, for some $r_{1}>1, \lim _{n \rightarrow \infty} r_{1}^{n}\left\|P^{n}(x ; \cdot)-\pi(\cdot)\right\|=0$, so that the geometric ergodicity of part (a) is established.

To prove (b), suppose the initial state X_{0} has distribution μ such that $\int_{\mathrm{X}} \mu(d x) V(x)<\infty$. By Theorem 2.5(iii) of [2] it suffices to prove that $\mathbb{E}_{\mu}\left[r^{\tau_{c}}\right]<$ ∞. As $\mathbb{E}_{\mu}\left[r^{\tau_{c}}\right]=\int_{\mathrm{X}} \mu(d x) \mathbb{E}_{x}\left[r^{\tau_{C}}\right]$, the inequality $\mathbb{E}_{x}\left[r^{\tau_{C}}\right] \leq c_{3} V(x)+c_{4}$ obtained above implies $\mathbb{E}_{\mu}\left[r^{\tau_{C}}\right]<\infty$ and hence the validity of (b) for some $r_{2}>1$ (Theorem 2.5(iii) of [2]).

Next consider part (d). In the stationary case $(\mu=\pi)$, the geometric ergodicity established in (a) and Theorem 2.1 of [2] imply that $\lim _{n \rightarrow \infty} \tilde{r}_{2}^{n} \int \pi(d x)\left\|P^{n}(x ; \cdot)-\pi(\cdot)\right\|=$ 0 for some $\tilde{r}_{2}>1$ (and condition $\int_{\mathrm{X}} \pi(d x) V(x)<\infty$ is not needed). Thus (b) holds in the stationary case. Regarding part (c) in the stationary case, note from (5) that now $\beta(n)=\int \pi(d x)\left\|P^{n}(x ; \cdot)-\pi(\cdot)\right\|, n=1,2, \ldots$, so that (b) and (c) are clearly equivalent (and hold with the same rate \tilde{r}_{2}).

To prove (c) in the general case, recall that $n_{1}=\lfloor n / 2\rfloor$ so that $n / 2-1<n_{1} \leq$ $n / 2$, and note that for any $\rho>1$ and $n \geq 2,1=\rho^{1-n / 2} \rho^{n / 2-1}<\rho^{1-n / 2} \rho^{n_{1}}=$ $\rho\left(\rho^{1 / 2}\right)^{-n} \rho^{n_{1}}$. Now choose r_{3} such that $1<r_{3}<\min \left\{r_{2}^{1 / 2}, \tilde{r}_{2}^{1 / 2}\right\}$ (where r_{2} and \tilde{r}_{2} are as above in the proofs of parts (b) and (d)). Now use these remarks and the inequality in Lemma A. 1 (in the main paper) to obtain
$r_{3}^{n} \beta(n) \leq \frac{1}{2} \tilde{r}_{2}\left(r_{3} \tilde{r}_{2}^{-1 / 2}\right)^{n} \tilde{r}_{2}^{n_{1}} \int \pi(d x)\left\|P^{n_{1}}(x ; \cdot)-\pi\right\|+\frac{3}{2} r_{2}\left(r_{3} r_{2}^{-1 / 2}\right)^{n} r_{2}^{n_{1}} \int \mu(d x)\left\|P^{n_{1}}(x ; \cdot)-\pi\right\|$.
From the proofs of (b) and (d) we obtain the results $\lim _{n \rightarrow \infty} r_{2}^{n_{1}} \int \mu(d x)\left\|P^{n_{1}}(x ; \cdot)-\pi\right\|=$ 0 and $\lim _{n \rightarrow \infty} \tilde{r}_{2}^{n_{1}} \int \pi(d x)\left\|P^{n_{1}}(x ; \cdot)-\pi\right\|=0$, so that $\lim _{n \rightarrow \infty} r_{3}^{n} \beta(n)=0$ and hence (c) follows.

References

[1] Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability 2nd ed. Cambridge University Press, Cambridge.
[2] Nummelin, E. and Tuominen, P. (1982). Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch. Proc. Appl. 12, 187-202.

[^0]: Received 16 April 2019; revision received 3 November 2020.

 * Postal address: Department of Economics, University of Helsinki, P. O. Box 17, FI-00014 University of Helsinki, Finland. Email: mika.meitz@helsinki.fi
 ** Postal address: Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, FI-00014 University of Helsinki, Finland. Email: pentti.saikkonen@helsinki.fi

