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Proof of Theorem 1. We use Theorem 2.5(ii) of [2] to prove (a). To this end,

first note that, due to the assumed irreducibility and aperiodicity, the petite

set C in Condition Drift–G is small ([1], Theorem 5.5.7). We first show that,

for some r > 1,

supx∈CEx [rτC ] <∞;

cf. Theorem 2.5(ii) of [2]. We proceed as in the proof of Theorem 15.2.5 in

[1] and, for the β in Condition Drift–G, choose an r ∈ (1, (1 − β)−1) and set

ε = r−1 − (1− β) so that 0 < ε < β and ε is the solution to r = (1− β + ε)−1.

Now we may reorganize the drift condition as

E [V (X1) |X0 = x ] ≤ r−1V (x)− εV (x) + b1C(x), x ∈ X.

Define Zk = rkV (Xk), k = 0, 1, 2, . . ., so that E[Zk+1 | Fk0 ] = rk+1E[V (Xk+1) |

Fk0 ] and thus

E[Zk+1 | Fk0 ] ≤ rk+1{r−1V (Xk)−εV (Xk)+b1C(Xk)} = Zk−εrk+1V (Xk)+r
k+1b1C(Xk).

Applying Proposition 11.3.2 of [1] with fk(x) = εrk+1V (x), sk(x) = brk+11C(x),

and stopping time τC we obtain

Ex
[∑τC−1

k=0
εrk+1V (Xk)

]
≤ V (x)+Ex

[∑τC−1

k=0
brk+11C(Xk)

]
= V (x)+br1C(x),
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because 1C(X1) = · · · = 1C(XτC−1) = 0 by the definition of τC . Multiplying

by ε−1r−1 and noting that V (·) ≥ 1, we obtain, for some finite constants c1, c2,

Ex
[∑τC−1

k=0
rk
]
≤ Ex

[∑τC−1

k=0
rkV (Xk)

]
≤ c1V (x) + c2.

As supx∈C V (x) <∞, supx∈C Ex
[∑τC−1

k=0 rk
]
<∞ is obtained. Using

∑τC−1
k=0 rk =

(rτC −1)/(r−1), this is equivalent to supx∈C Ex [rτC ] <∞ as desired; note that

we also have, for some finite constants c3, c4, Ex [rτC ] ≤ c3V (x)+c4. Now Theo-

rem 2.5(ii) of [2] implies that, for some r1 > 1, limn→∞ r
n
1 ‖Pn(x ; ·)− π(·)‖ = 0,

so that the geometric ergodicity of part (a) is established.

To prove (b), suppose the initial state X0 has distribution µ such that∫
X µ(dx)V (x) <∞. By Theorem 2.5(iii) of [2] it suffices to prove that Eµ [rτC ] <

∞. As Eµ [rτC ] =
∫
X µ(dx)Ex [rτC ], the inequality Ex [rτC ] ≤ c3V (x) + c4

obtained above implies Eµ [rτC ] < ∞ and hence the validity of (b) for some

r2 > 1 (Theorem 2.5(iii) of [2]).

Next consider part (d). In the stationary case (µ = π), the geometric ergodic-

ity established in (a) and Theorem 2.1 of [2] imply that limn→∞ r̃
n
2

∫
π(dx) ‖Pn(x ; ·)− π(·)‖ =

0 for some r̃2 > 1 (and condition
∫
X π(dx)V (x) < ∞ is not needed). Thus (b)

holds in the stationary case. Regarding part (c) in the stationary case, note

from (5) that now β(n) =
∫
π(dx) ‖Pn(x ; ·)− π(·)‖, n = 1, 2, . . ., so that (b)

and (c) are clearly equivalent (and hold with the same rate r̃2).

To prove (c) in the general case, recall that n1 = bn/2c so that n/2−1 < n1 ≤

n/2, and note that for any ρ > 1 and n ≥ 2, 1 = ρ1−n/2ρn/2−1 < ρ1−n/2ρn1 =

ρ(ρ1/2)−nρn1 . Now choose r3 such that 1 < r3 < min{r1/2
2 , r̃

1/2
2 } (where r2 and

r̃2 are as above in the proofs of parts (b) and (d)). Now use these remarks and

the inequality in Lemma A.1 (in the main paper) to obtain

rn3β(n) ≤ 1

2
r̃2(r3r̃

−1/2
2 )nr̃n1

2

∫
π(dx) ‖Pn1(x ; ·)− π‖+3

2
r2(r3r

−1/2
2 )nrn1

2

∫
µ(dx) ‖Pn1(x ; ·)− π‖ .

From the proofs of (b) and (d) we obtain the results limn→∞ r
n1

2

∫
µ(dx) ‖Pn1(x ; ·)− π‖ =

0 and limn→∞ r̃
n1

2

∫
π(dx) ‖Pn1(x ; ·)− π‖ = 0, so that limn→∞ r

n
3β(n) = 0 and

hence (c) follows. �
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