Green Paths -reittiopas edistää terveellistä ja aktiivista matkustamista

Age Poom, Joose Helle, Tuuli Toivonen

Uusi Green Paths -reittiopas auttaa valitsemaan hiljaisemman ja ilmanlaadultaan parhaan pyöräily- ja kävelyreitin.

Pääkaupunkiseudulla toimivan reittityökalun suositukset perustuvat reaaliaikaiseen tietoon ilmanlaadusta sekä kaupungilla tehtyihin melutasomittauksiin. Sovelluksen avulla liikkuja välttää vilkkaasti liikennöidyt kadut, mutta pääsee silti perille kohtuullisessa ajassa.

Helsingin yliopiston Digital Geography Lab -tutkimusryhmä on kehittänyt Green Paths -reittityökalun auttamaan jalankulkijoita ja pyöräilijöitä löytämään miellyttävimmät reitit. Nyt julkistettu sovellus on prototyyppi, joka toimii Helsingin, Espoon, Vantaan ja Kauniaisten alueella.  Näissä kunnissa on saatavilla sovelluksen tarvitsemaa dataa.

Yleensä reittioppaat tarjoavat nopeimpia tai lyhimpiä reittejä, mutta miellyttävyyttä ja terveellisyyttä ei huomioida. Ohjaamalla pyöräilijät ja kävelijät miellyttävämpään matkaympäristöön reittiopas pyrkii edistämään kaupunkiliikkujien terveyttä ja hyvinvointia. Tutkimusryhmämme toivoo reittioppaan edistävän myös ilmastollisesti vastuullista ja kestävää kaupunkiliikennettä.

Kätevintä on tarkastella vaihtoehtoisia reittejä ennakkoon matkapuhelimesta ja tietokoneelta. Erityisesti kävelijä voi myös seurata hieman mutkikkaampaa reittiä matkan aikana. Sovelluksen saa myös puhelimen avausnäyttöön sekä iOS- että Android -puhelimissa.

Green Paths -reittiopas auttaa valitsemaan hiljaisemman ja ilmanlaadultaan parhaan pyöräily- ja kävelyreitin pääkaupunginseudulla.

Green Paths -reittiopas nojaa ajallisen ympäristöaltistumisen arvioinnin käsitteeseen. Osana Helsingin kaupungin koordinoimaa HOPE-hanketta kehitetty työkalu optimoi reittien valinnan ympäristöaltistuksen kustannusten ja matkan keston perusteella. Tämän perusteella se tarjoaa joukon reittejä lyhimmästä pitempiin, mutta terveellisempiin. Reittiopas hyödyntää avoimia ympäristötietoja. Työkalussa käytetään reaaliaikaista ilmanlaatua koskevaa tietoa, jonka tuottamista Ilmatieteen laitos parhaillaan kehittää. Melutietojen osalta käytetään Suomen ympäristökeskuksen ja kuntien tuottamaa tieliikenteen keskimääräistä mallinnettua melutasoa. Katu- ja polkuverkosto reittioptimointiin haetaan joukkoistamalla tuotetusta OpenStreetMap-aineistoista.

Reittioppaan lähdekoodi on julkaistu avoimesti GitHubissa. Työkalu sisältää myös ohjelmointirajapinnan, jonka avulla ympäristön kannalta optimoituja reititystuloksia voidaan viedä muihin sovelluksiin. Lähdekoodin saatavuus auttaa muita kehittäjiä ottamaan ympäristökustannustekijät huomioon matkasovelluksissaan.

Tähän mennessä, Green Paths-reittiopas on kehitetty prototyyppinä ja uusia ominaisuuksia tulee saataville sitä mukaan kun kehitystyö etenee. Reittioppaan tarkoitus on ennen kaikkea havainnollistaa ympäristöaltistumisen huomiovaa reititystä ja sen osalta täytyy siis huomioida, ettei työkalun toiminta välttämättä ole taattua kaikkina aikoina.

Tulevaisuudessa reittioppaaseen tullaan esimerkiksi uutena ympäristöaltituksena sisällyttämään matkanaikaisten vihernäkymien kertymä melu- ja ilmanlaatualtistusten rinnalle. Myös katutasoisten ilmanlaatu- ja melukarttojen tarjoaminen osana reittiopasta kuuluu tulevaisuuden kehityskohteisiin.

Green Paths tool: street level noise
Green paths -reittiopas näyttää keskimääräiset melutasot tieverkostossa

Green Paths -reittiopas löytyy mobiilikäyttöiseltä verkkosivustolta https://green-paths.web.app/, sekä suomeksi että englanniksi. Lisätietoja löytyy verkkosivustolta https://www.helsinki.fi/en/researchgroups/digital-geography-lab/green-paths. Käy siis tutustumassa!

Green Paths -reittioppaan sovelluskehittäjä on Joose Helle. Sovellus on valmistunut Helsingin yliopiston Digital Geography Lab tutkimusryhmässä osana Helsingin kaupungin Elinkeino-osaston koordinoimaa  Urban Innovation Action HOPE –  Healthy Outdoor Premises for Everyone -hanketta. Hankkeeseen osallistuu tutkimusryhmästämme Joose Helle, Age Poom, Tuomas Väisänen ja Tuuli Toivonen.

Healthy Outdoor Premises for Everyone HOPE on Euroopan aluekehitysrahaston Urban Innovative Action-ohjelman rahoittama Helsingin kaupungin koordinoima hanke, jonka tavoitteena kehittää uutta ilmanlaadun täsmätietoa ja edistää sen innovatiivista hyödyntämistä kaupunginosa- ja asukastasolla Helsingissä.

Digital Geography Lab on monitieteinen tutkimusryhmä, joka hyödyntää paikkatietoanalytiikkaa ja isoja aineistoja edistääkseen kestävyyttä ja reiluutta yhteiskunnassa. Pyrimme ymmärtämään ihmisten, yhteiskunnan ja ympäristön välisiä alueellisia ja ajallista vuorovaikutussuhteita eri mittakaavatasoilla paikallisesta globaaliin.

Green Paths routing tool encourages healthy and active travelling

Authors: Age Poom, Joose Helle, Tuuli Toivonen

The new Green Paths routing tool helps pedestrians and cyclists to choose urban commuting routes with less air and noise pollution. The tool is a proof of concept of exposure-optimised routing. It functions in the Helsinki capital region where the necessary environmental data is available.

This novel routing tool suggests a set of routes to the user-defined destination that are less polluted than the shortest, often busy main road. This is different from the traditional routing concept that considers only distance or travel time for route choices.

The users of the Green Paths routing tool can follow their own preferences in making the final route choice that is quieter, has fresher air and feels more pleasant. As such, the user becomes an active decision-maker, empowered to choose the most appealing route with only a modest increase in travel time. The new Green Paths routing tool indeed aims to improve travel satisfaction. A pleasant travel experience makes commuters more likely to walk or cycle regularly. In this way, commuters using the Green Paths tool contribute to a more sustainable city with cleaner air.

Green Paths routing tool
Examples of the user interface of the Green Paths routing tool for air and noise pollution optimised cycling and walking routes in the Helsinki capital region.

The Green Paths routing tool leans on the concept of travel-time environmental exposure assessment. It optimises route choice based on both environmental exposure and trip duration, separately for air pollution and noise. For that, it deploys open-source environmental data. The tool applies real-time and spatially explicit air quality information from the ENFUSER modelling system that is being developed by the Finnish Meteorological Institute. In particular, Green Paths tool utilises Air Quality Index, which reflects the state of air pollution in the Helsinki capital region on an hourly level. For noise data, the tool applies average noise levels from road, rail and air traffic. The modelled data is provided by the Finnish Environmental Institute and local municipalities. Data for the underlying street and path network originates from OpenStreetMap, which is a collaborative open-source geodata project. The user can change the underlying map style by choosing either the street network or satellite image display option.

To ensure transparency and support the advancement of related methods and tools, the Green Paths routing tool is an open-source development (check the repositories in GitHub). The platform provides also an API that enables the export of environmentally optimised routing results to other applications. By providing the open code, the team encourages other developers to consider environmental cost factors in their active travel-oriented applications.

As an end-user application, Green Paths routing tool is publicly available via a mobile-friendly website https://green-paths.web.app/, in both Finnish and English. The user can pre-check suitable routes from a computer or then navigate in real travel situations with the help of a smartphone interface. To grant a smooth daily use, the user can add the browser link of the tool to his/her smartphone home screen that enables the use of the tool similarly to any other smartphone application. All users are encouraged to give feedback on the usability of the tool via a link found in the information modal of the tool.

For now, the Green Paths tool is developed as a proof of concept with advancements of the features and functionalities in time. It should be considered as a demonstration of exposure-optimised routing based on spatially explicit and advancing open access data sets, and it is not guaranteed to work smoothly at all times. In the future, the tool will incorporate routing based on green views the users experience in the travel environment. The works in progress involve, among others, showing street-level maps on air and noise pollution.

Green Paths tool: street level noise
The Green Paths tool shows average traffic noise levels in the street network.

Start using the Green Path tool on your next trip in Helsinki region! More information about the tool is available at https://www.helsinki.fi/en/researchgroups/digital-geography-lab/green-paths.

The software and user interface is developed by Joose Helle. The Green Paths team involves Joose Helle, Age Poom, Tuomas Väisänen and Tuuli Toivonen from the Digital Geography Lab of the University of Helsinki. The tool is developed within the framework of the Urban Innovation Action HOPE – Healthy Outdoor Premises for Everyone, and is co-financed by the European Regional Development Fund. UIA HOPE aims to produce more comprehensive air quality monitoring network that gives citizens air quality information on places where they live and they travel in the city. UIA HOPE project is led by the Economic Development Division of the City of Helsinki.

Digital Geography Lab at the University of Helsinki is an interdisciplinary research team focusing on spatial big data analytics for fair and sustainable societies. The group aims to understand spatial interactions between people, and between people and their environment, from local to global scales.

NoRSA 2019 Keynote: Tuuli Toivonen

We will also start sharing our presentations in the Digital Geography Lab blog!

To start out, we will share Tuuli’s Keynote presentation at NoRSA 2019 Conference Seinäjoki, Finland, 19th June 2019 that summarizes much of our ongoing work related to socio-spatial interactions and Big Data:

 

 

COVID-19 is spatial: Ensuring that mobile Big Data is used for social good

Authors: Age Poom, Olle Järv, Matthew Zook and Tuuli Toivonen

We have just published our commentary regarding human mobility, mobile Big Data and the responses to COVID-19 pandemic in the Big Data & Society journal (see also the journal’s blog).

This commentary was motivated by our previous experience with mobile Big Data and recent work on changed human mobility derived from mobile phone data during the COVID-19 outbreak in Finland (e.g. Järv et al. 2020a; Järv etal. 2020b). It also draws from the knowledge and experiences of our peers around the globe.

In short, the mobility restrictions related to COVID-19 pandemic have resulted in the biggest disruption to individual mobilities in modern times. The crisis is clearly spatial in nature, and examining the geographical aspect is important in understanding the broad implications of the pandemic. We can benefit from the avalanche of mobile Big Data that makes it possible to study the spatial effects of the crisis with spatiotemporal detail at the national and global scales. Yet, the current crisis also highlights serious limitations in the readiness to take the advantage of mobile Big Data for social good, at large, regarding technological, administrative and legislative aspects.

Drawing on the Finnish and Estonian experiences, and the practices of global platform companies (e.g. Google) during the early phases of COVID-19 pandemic, we argue that we need to re-evaluate the public-private relationships with mobile Big Data and propose two strategic pathways forward.

First, we call for transparent and sound mobile Big Data products that provide relevant up-to-date longitudinal data on the mobility patterns of dynamic populations.

Second, there is also a need to develop trustworthy platforms for collaborative use of raw individual-level data. Secured and privacy-respectful access to near real-time raw data is needed for developing and testing sound methodologies for the above-mentioned data products. This would help to bridge the Big Data digital divide, enable scientific innovation, and offer necessary flexibility in responding to unanticipated questions on changing locations and mobilities in the case of crises. To be clear, we do not view this as simple to achieve, particularly as we weigh what kind of institution might best fill this role without jeopardizing personal privacy and democracy, or how is “social good” defined and operationalized in practice. However, addressing these issues via public debates and academic discourses will leave us better prepared for the next crisis.

To conclude:

  • We need harmonized and representative data about human mobility for better crisis preparedness and social good in general;
  • Methodological transparency about mobile Big Data products are vital for open societies and capacity building;
  • Access to mobile Big Data to develop feasible methodologies and baseline knowledge for public decision-making is needed before the next crisis occurs;
  • Recognizing the fundamental spatiality of the current COVID-19 crisis and crises more generally is the most relevant of all.

Digital Geography Lab is an interdisciplinary research team focusing on spatial Big Data analytics for fair and sustainable societies. We aim to understand spatial interactions between people, and between people and their environment, from local to global scales.

Quiet paths for daily travel: developing online navigation and exposure assessment tool

Overview of Joose Helle’s MSc thesis

Exposure to noise pollution can cause various adverse health effects such as increased blood pressure and stress levels. Noise exposure has traditionally been assessed in terms of home location, as required by national and international policies. However, a substantial share of individuals’ total daily noise exposure is likely to happen while they are on the move. This evidently also affects the healthiness of active travel modes, walking or cycling, by reducing or even outweighing positive health effects of physical activity. Thus, there is a clear need for advancing exposure assessment beyond residential location to gain a true understanding of exposure profiles and their potential effects on health and well-being.

Journey-time exposure assessment can study spatially dynamic exposure to pollutants as people move through the urban environment. Furthermore, least-cost routing can be applied to find healthier paths with lower exposure levels to pollutants. This novel research field has a potential to support urban sustainability and equitability through increasing awareness of the qualities of travel environments, assessing population exposure, supporting individual mobility choices as well as planning healthier travel infrastructure throughout the urban fabric.

These tasks are not trivial. How to assess dynamic exposure to noise pollution? How to find routes with less noise than on the shortest route? How to develop a mobile navigation application for exposure-based route planning? These were the key questions I addressed in my master’s thesis: Quiet paths for people: developing routing analysis and Web GIS application, defended in May 2020 at the University of Helsinki.

In my thesis, I developed a routing application for 1) finding shortest paths, 2) assessing exposure to traffic noise on the paths and 3) finding alternative, quieter paths. This “quite path” application uses street network data from OpenStreetMap and modelled traffic noise data of typical daytime noise levels. The underlying least-cost path analysis employs a custom-designed environmental impedance function for noise and a set of noise sensitivity coefficients.

After developing the quiet path routing application, I applied it for assessing pedestrians’ dynamic exposure to noise on their routine local walks in the Helsinki region. The case study assessment included public transport itinerary planning analysis by census-based commuting flow data. In addition, I assessed the performance of the quiet path routing method by inspecting achievable reductions in traffic noise exposure on 18446 modelled commuting related walking routes. In other words, I assessed the potential of the quiet path routing method for reducing pedestrians’ exposure to noise under different circumstances.

The results of my analysis show that there is a significant spatial variation in average dynamic noise exposure between different neighbourhoods (Figure 1). That is followed by significant achievable reductions in noise exposure if quieter paths are preferred. Depending on the conditions, quieter paths provide 1.6–9.6 dB mean reduction in mean noise level and up to 57% mean reduction in exposure to high noise levels (65 dB and above) when compared to the shortest paths (Figure 2). According to the results, at least three factors seem to affect the reductions in noise exposure on alternative paths: 1) noise levels on the shortest path, 2) length of the quiet path compared to the shortest path and 3) length of the shortest path (i.e. the distance between origin and destination).

Figure 1. Mean traffic noise level (dB) on local walking routes from home to closest public transport stops. The averages are weighted with the estimated utilization rates of the routes.

 

Figure 2. Histogram of reductions in traffic noise exposure as difference in mean noise level (dB) (A) and reductions in traffic noise exposure as difference in exposure to +65 dB noise (m; i.e. “> 65 dB dist.”) (B) on quiet paths less than 200 m longer than the respective shortest paths (path length: 700–1300 m; n=11355).

Having found the significant achievable reductions in dynamic noise exposure, the next logical step was to develop and publish the quiet path routing method as a web-based route planner application. The application is composed of open quiet path routing API and a mobile-friendly web map application (Figure 3). The quiet path route planner demonstrates the applicability of the quiet path routing method in real-life situations and thus can help pedestrians to choose quieter paths.

Figure 3. The user interface of the quiet path route planner when (A) showing several alternative paths (one shortest path and three quiet paths) and (B) showing exposure to noise on a selected path.

All methods and source codes developed in the thesis are openly available via GitHub. I hope that this work will increase awareness of individuals’ dynamic exposure to pollutants and accelerate the development of exposure-based routing tools. Together with our research group, we also welcome various collaboration in exposure studies and offer research themes for master studies.

Read the whole thesis in HELDA.

The quiet path routing application is already being developed further towards a multifunctional Green Paths route planner within the UIA HOPE project (Urban Innovative Action HOPE – Healthy Outdoor Premises for Everyone). In the project, more environmental factors have been or will be incorporated to the least-cost routing tool, including real-time air quality based on the modelling system of Finnish Meteorological Institute, and green views gained from Google Street View imagery.

Access the mobile-friendly Green Paths routing tool at green-paths.web.app.

Explore the source codes in github.com/hellej/quiet-paths-msc
(for the latest version, see also github.com/DigitalGeographyLab/hope-green-path-server and github.com/DigitalGeographyLab/hope-green-path-ui).

COVID-19 causes a threat to protected areas in the Global South – evidence from Madagascar

Authors: Johanna Eklund, Ari-Pekka Jokinen, and Tuuli Toivonen

Introduction

The coronavirus pandemic will have long lasting impacts on the conservation of biodiversity and protected areas. In many Nordic countries, people have been visiting green areas, protected areas included, more than ever. In the Global South however, the situation is almost the opposite, putting conservation at risk. In many developing countries, nature-based tourism has been important for financing biodiversity conservation. Tourism to protected areas has, however, ceased drastically during the global confinement strategies. The consequences of vanishing tourism are very visible for example in Madagascar, one of the world’s biodiversity hotspots, with the highest number of threatened species globally. While being rich in biodiversity, Madagascar is economically among the poorest nations in the world. Madagascar currently has protected 7.5 % of its terrestrial land area, but this protection relies on funding from abroad. Previous research (Eklund et al. 2016 & Eklund et al. 2019) have shown that the protected areas have the capacity to curb deforestation, but funding is needed for the maintenance of conservation actions.

In Madagascar, tourism contribute to approximately 30 % of the annual income of the protected area agency Madagascar National Parks (MNP). MNP is managing some of the most visited national parks in the country. Due to the pandemic there have been concerns raised that the loss of tourism revenue could make the protected areas more vulnerable to illegal encroachment, such as poaching and deforestation. Both Mongabay and National Geographic have reported about these concerns recently. So far the concerns have been based on expert opinions and anecdotal evidence. In this writing, we provide evidence that the protected areas in Madagascar are experiencing rapid increases in human induced fires during the corona crisis.

The corona virus pandemic hit Madagascar on March 20, 2020. The government stopped international flights on the same day and shut down the country’s three major cities (Antananarivo, Toamasina and Fianarantsoa). Protected areas have been closed for visitors since March 23rd 2020. The lockdown has been partially lifted since April 20th, but the protected areas remain closed from visitors.

What we did?

We used satellite based data on active fires made openly available by NASA to see if there are signals of increased human activity inside the protected areas.  This type of data has previously been used as a proxy for human caused bushfires (Nolte & Agrawal 2012). We were interested to follow temporal trends and investigate which areas are most affected. The aim was to provide a tool that can be useful for protected area managers. For a more detailed report on methods, see the end of the blog post.

We stress that the figures presented below are tentative results from an initial inspection of the data. The analyses are ongoing and we will follow the trends during the coming months to get a better understanding of the long-term effects the pandemic has on protected areas.

What do we see?

From the first of March 2020 until the 17th of May 2020 altogether 1013 active fires were detected inside protected areas in Madagascar (Fig. 1). This is an 81% increase compared to the same time period in 2019. However, not all protected areas are affected. There are many with no change compared to last year (n=64) and some with less fires this year (n=20). In total 29 protected areas had more fires this year than last year (Fig. 2), and of these 6 showed a drastic increase (more than 30 fires more this year).

Figure 1. Number of active fires/thermal anomalities (normal and high confidence) inside protected areas in Madagascar for March 1- May 17 for 2019 and 2020.

Figure 2. Map of Madagascar and the terrestrial protected areas. Graduated colours show the difference in fires this year compared to the corresponding period in 2019 (March 1- May 17). By clicking on the map you will be taken to an interactive version with more detailed information about the temporal trends for each protected area. NOTE: Opens best in Firefox or Chrome on a desktop https://blogs.helsinki.fi/digital-geography/files/2020/06/folium_map.html

What does this mean?

Our preliminary results show clearly that the COVID-19 pandemic has affected the protected areas in Madagascar and the human pressures have increased. It is clear that the protected areas in the Western dry forests of Madagascar are the most affected so far. Fires are commonplace in Madagascar even during normal times. People often burn and clear land to plant crops before the start of the rainy season that runs from November to April. The fires usually appear in July, but this year they have started to increase early. Of the nine hardest hit protected areas, especially Tsingy de Bemaraha has been popular among visitors. According to MNP, Tsingy de Bemaraha was the fifth most visited park in the country last year. The dramatic increase of fires in Tsingy de Bemaraha could well be related to the loss of tourism revenue, meaning that people now have to rely on the land instead. The fires in the park extend all the way to the interior, not just around the borders. Ankarafantsika National Park was severely hit by fires last autumn and MNP was calling for international help to manage the fires already then, according to Mongabay. This makes the increased burning this year very troublesome. Bongolava, adjacent to Ankarafantsika national park, has had uprisings before, where farmers have demanded their right to grow corn in the area (Mongabay).

In conclusion, it seems the COVID-19 pandemic has caused an increase in bushfires inside the protected areas. To what extent this can be traced to the lack of tourists and the loss of tourism generated income is still unclear, but the tools developed will allow us to follow the long-term impacts of the crisis. Historically, many of the Malagasy living around protected areas have compared conservation organizations and tourists to the previous colonial masters, claiming the land for the benefit of outsiders. Efforts have been made to convince the locals that protected areas can bring alternative livelihoods and that they can profit from keeping nature intact. With tourism revenues now gone, it is easy to understand that some must feel betrayed by this promise.

Future directions

This is ongoing work and we will continue to track the situation during the coming months. We will use the average of the last five years as a baseline, and not just last year as in this blog post. The development work will continue in collaboration with Madagascar National Parks and Forum LAFA, the network for terrestrial protected area managers in Madagascar.

More information on methods:

We used NASA´s Visible Infrared Imaging Radiometer Suite (VIIRS) Corrected Reflectance Imagery data to detect signals of potential fires in the protected areas of Madagascar. VIIRS data is available on a daily basis and is therefore suited to explore time trends at fine resolution. We compared the active fires this year to the corresponding time last year. In our analyses we included the fires that were of high or normal confidence and omitted those that could have been other bright reflections than fires. We included the terrestrial protected areas listed in the Protected Planet Database for Madagascar. Some of these areas might not yet have full designated status, but were included to track trends also in proposed protected areas. We did not limit our analysis to only forested areas, but included fires in all land-use types.

Who we are:

The Digital Geography Lab at the University of Helsinki is an interdisciplinary research team focusing on spatial big data analytics for fair and sustainable societies. See previous blog posts about the effects of COVID-19 on mobility patterns in Finland here and here.

 

A new paper on understanding the use of urban green spaces from user-generated data

Parks and other green spaces are an important part of sustainable, healthy and socially equal urban environment. Urban planning and green space management benefit from information about green space use and values, but such data are often scarce and laborious to collect. Temporally dynamic geographic information generated by users of different mobile devices and social media platforms are a promising source of data for studying green spaces.

Social media data, sports tracking data, mobile network data and PPGIS data from green spaces
Examples of social media data, sports tracking data, mobile phone data and PPGIS data from green spaces in Helsinki, Finland.

In a recent article published in the Landscape and Urban Planning journal we compare the ability of different user-generated data sets to provide information on where, when and how people use and value urban green spaces. We compare four types of data: social media, sports tracking, mobile phone operator and public participation geographic information systems (PPGIS) data in a case study from Helsinki, Finland, and ask: 1) where the spatial hot-spots of green space use are, 2) when people use green spaces, 3) what activities are present in green spaces and 4) who are using green spaces based on available sample data sets.

Map of green spaces in Helsinki, Finland
Green spaces in Helsinki, Finland

Being in, moving through and perceiving urban green spaces

Our results show that user-generated geographic information provide dynamic information about the use of urban green spaces. Social media data highlight patterns of leisure time activities and allow further content analysis. Language detection allows further understanding of the different user groups. Sports tracking data and mobile phone data capture green space use at different times of the day, including commuting through the parks. PPGIS studies allow asking specific questions, including relevant background information from active participants.

Spatial distribution of the different data sources
in 250 m x 250 m grid squares. (see more results in the original publication).

 

Daily pattern of activity in green spaces (social media data on the left, sports tracking data on the right).

Each data source has its limitations which need to be acknowledged in further analyses. For example, social media data are mainly produced by young adults and the popularity of different platforms might change quickly over time. Sports tracking data is dominantly produced by men and focuses on physical activities such as biking and jogging. Mobile network data is often difficult to access at fine granularity, and PPGIS data are limited in duration and extent. In all cases, user-generated data should be processed and reported in a privacy-preserving manner.

Despite evident limitations, these data might often be the best available information about the use of green spaces. Combining information from multiple user-generated data sets complements traditional data sources and provides a more comprehensive understanding of green space use and preferences.

Potential of different user-generated data sets for answering different questions related to green space use. The further towards the corner of the radar chart, the better the quality.

New data have become available during the COVID-19 pandemic

Near-real time information about human activities in different areas have become extremely relevant during the COVID-19 pandemic in spring 2020, and new data sources about people’s mobility patterns have become available for research.

The Digital Geography Lab recently analyzed changes in population distribution, and mobility patterns in Finland based on aggregated and anonymized mobile network data acquired from a local operator. The local newspaper Helsingin Sanomat had access to more detailed mobile network data allowing the comparison of activity in green spaces between spring 2019 and 2020, showing a significant increase of people, for example, in national parks in the Helsinki Region.

Also Google, and Apple  have shared previously inaccessible information about people’s mobility patterns openly online (for a limited time period). These mobility data sets show a general trend of increased activity in green spaces in the Helsinki Region, and decreased activity in transit, retail and workplaces. Data from Google and Apple contribute to understanding questions related to where, when and what with most accurate information about the temporal dimension.

These data sets are highly aggregated and anonymized  – individual users, or even individual parks are not visible in these mobility data sets.

Main limitations for using these data are still the same as we highlight in our paper (Heikinheimo et al. 2020): the representativeness of, access to and ethical use of user-generated content.

Overall, there is clearly an increasing need for versatile information about crowded (and silent) places in urban areas, and the various benefits of urban green spaces to people.

Read the full article (written before the covid-crisis) at: https://authors.elsevier.com/sd/article/S0169204619313635

Heikinheimo, V. , Tenkanen, H., Bergroth, C., Järv, O., Hiippala, T., & Toivonen, T. (2020). Understanding the use of urban green spaces from user-generated geographic information. Landscape and Urban Planning, 201, [103845]. https://doi.org/10.1016/j.landurbplan.2020.103845

 

Towards summer cottages: Mobility flows amid the COVID-19 outbreak in Finland in March

Olle Järv, Elias Willberg, Tuomas Väisänen, Tuuli Toivonen

According to Statistics Finland (2018), there are more than half a million summer cottages around Finland. They are mostly located in rural areas close to waterbodies – lakes and seaside. In a country with 2.7 million households, such a high number of cottages may change the population patterns drastically once people would move to their cottages in large numbers. This is a potential risk during the epidemic outbreak such as the COVID-19 – health care services are designed mostly based on the permanent population and the cottage dwellers might break the balance in sparsely populated areas. Our preliminary findings already indicated that despite travelling restrictions due to the COVID-19 outbreak in Finland many people escaped from big cities to their summer cottage, see here. But was it really the lure of the summer cottages that explain the mobility patterns to more rural countryside?

Method: We used anonymised and aggregated mobile network data from Telia Crowd Insights such as activity location data as in our previous analyses, and further examined trip data between municipalities. Activity location data indicates the presence of people in a municipality – once a person stays at least 20 minutes in one municipality during one day, then his/her presence is counted as one activity location in given municipality. For example, when having a longer lunch break in a gas station during a long-distance travel. Thus, a person can have several activity locations in different municipalities each day. Trip data is calculated between the two consecutive activity locations at municipality level. In trip data, actual long-distance travel is counted as two different trips, if a longer break is taken during travelling. For example, travel from Helsinki to Rovaniemi by train via Jyväskylä is counted as two trips in data, because train stops at Jyväskylä longer than 20 minutes. These nuanced must be taken into account while reasoning findings.

Findings: We compared the change in the number of people in municipalities and the relative distribution of summer cottages. We found a strong proof that urban dwellers did escape to their summer cottages amid the COVID-19 outbreak. Mobility flows to summer cottages started already after the first official guidance on 12th March, and people were in their second-homes already before travelling restrictions were made official by the government. Data indicates that on average some 370 additional people for every 1000 summer cottages in a municipality arrived to a municipality towards the end of March.

To analyse the phenomenon further, we chose six municipalities for further analysis. All of these municipalities are rich in summer cottages and showed increasing number of dynamic population during the COVID-19 outbreak. We analysed the flow of people using aggregated and anonymized trip data (see above).

The mobility flows show varying geographical catchment areas for different municipalities, indicating also different risk levels of potential virus spreading outbreak. Municipalities in Central Finland received people from more diverse directions, whereas in coastal areas and closer to country border origins of mobility is more concentrated to close by municipalities or other shoreline locations. Thus, from the perspective of human mobility, summer cottage areas in the central parts of the country play stronger mediating role for virus transmission between different regions in Finland.

Figure 1. The linear correlation between the increase of people compared to typical workdays and the relative amount of summer cottages per 1000 inhabitants at municipality level gives the correlation coefficient 0.75. Municipalities in the Åland Islands are excluded from the correlation as ferry passengers passing through the archipelago affect their data. On average, municipalities gained some 11 % of additional people in case of municipalities that increased the presence of people in the last week of March compared to the baseline week (n = 174).

 

Figure 2. Temporal dynamics of temporary population compared to the baseline working days (average from Mon 3.2. to Thu 6.2.) in case of six well-known ”summer cottage” municipalities in Finland. In addition to typical weekend visits to summer cottages, people stayed there also during the winter holiday season (15.2-8.3). After just a couple of typical workdays people started to move back to their summer cottages since Thursday (12.3.) regarding the COVID-19 outbreak, but with much higher volume.

 

Figure 3. We approximated the “occupancy” of summer cottages while people escaped cities due to the COVID-19 crisis. The amount of increased people per 1000 summer cottages in a municipality is considered as an indicator for the summer cottage “occupancy”. We examined municipalities that increased the presence of people in the last week of March compared to the baseline week (n = 174). These municipalities gained some 370 additional people per 1000 summer cottages in a municipality, on average. Half of these municipalities gained additional people from 230 to 530 per 1000 summer cottages. More specifically, we rank ordered municipalities by summer cottage count per inhabitants and selected top 25 “summer cottage” municipalities – half of these municipalities gained additional people from 230 to 400 per 1000 summer cottages in a municipality.

 

Figure 4. Three different geographical tales of human mobility to popular summer cottage municipalities in Finland: 1) Sysmä, 2) Puumala, and 3) Kustavi. The maps show the geographical catchment area of each observed municipality. In each selected municipality, most people arrive from the close neighboring municipalities; however, these also attract people widely from different parts of Finland.

 

Figure 5. Mobilities to SysmäPuumala, and Kustavi in the context of the COVID-19 infection situation. The mobility flows reveal varying geographical catchment areas for different municipalities, which also can indicate different risk levels of potential virus transmission for different municipalities. For example, Uusimaa region in South Finland (including the Capital of Helsinki) has been the hotspot of the COVID-19 outbreak in Finland and had the highest infection rate per 100 000 inhabitants at late March 2020 (data by healthcare districts in 29.3.2020). Considering all trips to a municipality between 12.3 – 29.3, only 13% (Sysmä),  9.5% (Puumala) and 7.3% (Kustavi) were from Uusimaa.

Kesämökkejä kohti – Liikkumisvirrat Suomessa COVID-19 epidemian aikaan

Olle Järv, Elias Willberg, Tuomas Väisänen, Tuuli Toivonen

Tilastokeskuksen mukaan (2018) Suomessa on yli puoli miljoonaa kesämökkiä. Pääosin ne sijaitsevat harvemmin asutuilla alueilla lähellä vesistöjä. Maassa, jossa on yhteensä 2.7 miljoonaa kotitauloutta, kesämökkien määrä voi vaikuttaa merkittävästi väestön sijoittumiseen, etenkin jos ihmiset siirtyvät kesämökeilleen massoina, kuten tapahtui COVID-19 kriisin alettua. Kun terveyspalvelut ovat pääosin suunniteltu vakituisen väestön pohjalta, kesämökkeilijät voivat merkittävästi lisätä terveyspalveluihin kohdistuvaa taakkaa. Alustavat tuloksemme viittasivat siihen, että moni siirtyi kesämökilleen isoista kaupungeista COVID-19 epidemian seurauksena huolimatta hallituksen matkustusrajoituksista (linkkI). Mutta selittikö kesämökkien houkutus todella löytämämme liikkumisrakenteet?

Menetelmä: Kuten aiemminkin, käytimme Telian Crowd Insights-palvelun anonymisoitua ja yleistettyä mobiiliverkkodataa, kuten aktiviteettisijainteja ja matka-aineistoa. Tilastotasoisista aineistoista ei ole mahdollista tunnistaa yksittäisien ihmisten tai pienten ryhmien liikkeitä. Aktiviteettiaineisto kuvaa väestön oleilua  kunnan alueella, jossa jokainen 20 minuutin oleilu yhden päivän aikana tallennetaan aktiviteetiksi kyseisen kunnan tilastoon. Tällöin esimerkiksi pidempi kahvitauko huoltoasemalla lasketaan aktiivisuussijainniksi ja niitä voi olla useampia päivän aikana eri kuntien alueella. Matka-aineisto puolestaan lasketaan kuntatasolla kahden akvitiviteettisijainnin väliksi. Tällöin matka-aineistossa pitkät matkat voivat tulla lasketuksi kahdeksi tai useammaksi matkaksi riippuen pitkien taukojen määrästä. Esimerkiksi junamatka Helsingistä-Rovaniemellä lasketaan useaksi matkaksi mikäli juna pysähtyy osalla asemista, kuten Tampereella, yli 20 minuutiksi. Nämä tekijät tulee ottaa huomioon tuloksia tulkitessa.

Löydökset: Vertasimme muutosta väestön määrässä eri kunnissa sekä kesämökkien suhteellista jakaumaa kunnittain. Löysimme vahvaa näyttöä siitä, että kaupunkilaiset todella pakenivat kesämökeilleen COVID-19 epidemian seurauksena. Liikkumisvirrat kesämökeille alkoivat jo ensimmäisten hallituksen suositusten jälkeen 12. maaliskuuta. Ihmiset siis olivat jo kakkoskodeissaan ennen kuin matkustusrajoitteet astuivat voimaan. Aineiston perusteella jokaista 1000 kesämökkiä kohden, kuntiin saapui keskimäärin noin 370 ihmistä lisää maaliskuun loppua kohden.

Päästäksemme tähän ilmiöön paremmin käsiksi, otimme kuusi kuntaa tarkempaan tarkasteluun. Kaikki kunnat ovat kesämökkivaltaisia, joissa väestön määrä oli kasvanut COVID-19 kriisin aikana. Tarkastelimme ihmisvirtoja anonymisoidulla ja yleistetyllä matka-aineistolla (ks. ylempää).

Ihmisvirtojen perusteella tarkasteluilla kunnilla on varsin erilaiset vaikutusalueet, mitkä osaltaan vaikuttavat viruksen leviämisen riskiin. Keski-Suomen kuntiin saapuu väestöä useammasta eri suunnasta kun puolestaan rannikkoalueilla ja Itä-Suomessa liikkumisvirtojen lähtöalueet keskittyvät useammin lähialueiden kuntiin. Liikkumisen näkökulmasta keskellä maata sijaitsevilla kesämökkikunnilla oli siten suurempi riski levittää virusta saapuvien ja lähtevien ihmisten mukana eri puolille Suomea.

Kuva 1. Lineaarinen korrelaatio ihmisten määrän lisääntymisen (verrattuna normaaliin työpäivään) sekä kesämökkien suhteellisen osuuden jokaista 1000 asukasta kohden välillä. Kuntatason vertailu antaa korrelaatiokertoimeksi 0,75. Ahvenanmaan kunnat on jätetty tarkastelun ulkopuolelle, koska ohikulkevat risteilymatkustajat vaikuttavat kuntien lukuihin. Keskimäärin ne kunnat, joissa väestömäärä kasvoi maaliskuun viimeisellä viikolla, kasvattivat väestöään 11 % verrattuna tarkastelujaksoon (n=174).

 

Kuva 2. Väliaikaisen väestön ajallinen vaihtelu verrattuna tarkastelujakson arkipäiviin (keskiarvo maanantai 3.2. – torstai 6.2.) kuudessa kesämökkikunnassa. Tyypillisten viikonloppuvierailujen lisäksi hiihtolomakausi erottuu ajanjaksona, jolloin ihmiset viettivät aikaa näissä kunnissa ennen COVID-19 epidemiaa. Epidemian alettua, ihmiset alkoivat siirtymään takaisin kesämökkikuntiin 12. maaliskuuta alkaen entistä suuremmissa määrin.

Kuva 3. Arvioimme myös kesämökeillä oleilua COVID-19 kriisin aikaan. Lisääntyvän väestön määrä 1000 kesämökkiä kohden kuntatasolla toimi tässä tapauksessa indikaattorinamme kesämökkioleilusta. Tarkastelimme kuntia, joissa väestön määrä kasvoi maaliskuun viimeisellä viikolla verrattuna tarkastelujaksoon. Nämä kunnat vastaanottivat keskimäärin 370 ihmistä lisää jokaista 1000 kunnan alueella sijaitsevaa mökkiä kohden. Puolet näistä kunnista saivat 230-530 ihmistä lisää 1000 kesämökkiä kohden. Valitsimme vielä 25 kuntaa, joissa on eniten kesämökkejä ja tarkastelimme niitä erikseen. Puolet näistä kunnista saivat 230-400 ihmistä lisää 1000 kesämökkiä kohden.

 

Kuva 4. Kolme erilaista maantieteellistä tarinaa ihmisten liikkumisesta suosittuihin kesämökkikuntiin: 1) Sysmä, 2) Puumala ja 3) Kustavi. Kartat osoittavat maantieteellisen vaikutusalueen jokaiselle tarkastelulle kunnalle. Jokaisessa niistä valtaosa ihmisistä on saapunut läheisistä kunnissa, mutta ne houkuttelevat ihmisiä myös eripuolilta Suomea.

 

Kuva 5. Liikkuminen Sysmään, Puumalaan ja Kustaviin suhteessa COVID-19 epidemian tilanteeseen. Liikkumisvirrat paljastavat erilaisia vaikutusalueita eri kunnille, joka myös indikoi erilaista riskiä viruksen leviämiselle. Esimerkiksi Uudellamaalla, joka on ollut suurin epidemian keskittymä Suomessa, oli korkein tartuntatapausten määrä 100 000 asukasta kohden maaliskuun lopulla (epidemiatilanne 29.3.2020). Kaikki kuntien väliset matkat huomioiden välillä 12.3 ja 29.3, kuitenkin vain 13% Sysmään saapuneesta väestöstä saapui Uudeltamaalta. Vastaavat luvut Puumalaan ja Kustaviin saapuneen väestön osalta olivat 9.5% ja 7.3%

COVID-19 changed the distribution of people in Finland in March – snapshots from aggregated and anonymized mobile network data

Olle Järv, Elias Willberg, Tuomas Väisänen, Tuuli Toivonen

Finland, like all other countries in Europe, was hit by the emergence of the covid-19 in March 2020. On Thursday 12th of March, the government gave the first serious recommendations of cancelling big public gatherings and encouraging distant working.  On Monday 16th March the government presented a state of emergency. The schools and public services like museums and libraries were closed and visits to elderly care homes were prohibited. Travel was to be limited to minimum. Historically, the border between Sweden and Finland was closed on the 19th March, restricting the workforce to move across the border in the northern areas and Åland islands. As the glittering snow of Lapland was still attracting tourists from the south, the ski resorts were closed on the 23rd March. As the strongest and an unprecedented measure, the border of the Helsinki-Uusimaa region was closed for personal traffic on the 28th March.  

We at Digital Geography Lab received data from mobile phone operator Telia to analyse how these recommendations and restrictions were followed. Below are some first views on the results, showing how the presence of people changed in the 310 municipalities of Finland during February – March 2020. We concentrate on March and compare the presence of people in different municipalities to the first week of February (1.-7.2.2020) – a baseline week before the start of the school winter holidays and the emergence of Covid 19.  The analysis is based on anonymised and aggregated mobile network data (Telia Crowd Insights activity data). A single activity is recorded of every 20 minute stay in one location. Some February days (12.2., 13.2, 25.2.) are missing in the dataset.

 Our inspection shows, for example 

  • A significant drop in inter-municipal mobility since mid-March. The biggest changes happen already after the governmental recommendations, not by the time of the binding lockdowns.  
  • The municipalities with summer cottages gained people, while the number of people spending time in cities decreased rapidly after the state of emergency was declared. 
  • In addition to big cities, estimated population in Åland islands and Lapland decreased drastically.
  • Number of people in Lapland decreased only after the ski resorts were closed. 

The decline of mobility at national level – people follow governmental guidance  

Figure 1. Inter-municipality mobility in Finland dives from mid-March. The activity location data shows the presence of people in a municipality. During typical times, people visit and spend time in several municipalities during a day. Extra mobility between municipalities takes place during the winter holiday season in Finland (17.2 – 6.3. or 15.2-8.3.). The government gave a recommendation to avoid travelling and promoting remote working since at the beginning of the Covid-19 outbreak 12.3. That recommendation was taken seriously – people’s activity spaces were rapidly limited. The governmental recommendation was a clear turning point, the later mobility restrictions by law influenced less.

Figure 2. The animation shows the relative change in number of people by municipality during March. People are accounted for each municipality they spend time in during the day. The baseline period for the daily comparisons is the first week of February (1.2 – 7.2.).  (If the video does not show, see the animation here: https://bit.ly/2YGCMoO)

The relative population change in Helsinki Metropolitan area – seizing activity 

Figure 3. Inter-municipality mobility in the Helsinki metropolitan (HMA) area follows the national pattern of declining mobility, but with much greater effect. Typically, the HMA has a stable mobility between municipalities. Every year February is special as people travel during the school winter holiday week. Then almost 10% of people left the region (many to Lapland). After the governmental recommendation to avoid travelling and restrict social interactions, the presence of people in the HMA decreased drastically. This happened already before the lockdown of the Uusimaa region (28.3.). Before the Uusimaa lockdown inter-municipality mobility had decreased some 25% compared to a typical week (1.2 – 7.2.) as people stay home and avoid social activities.   

The relative population change in Lapland – boom and bust 

Figure 4. During the winter holiday season (15.2 – 8.3.) the presence of people in the in six municipalities with a skiing resort in Lapland (Inari, Kittilä, Kolari, Kuusamo, Muonio, Pelkosenniemi) is booming as usual. Working days show some 40% increase of people compared to the baseline week (red line). Furthermore, Saturdays show even 60-80% increase of people compared to a baseline Saturday (1.2.). Interestingly, the governmental guidance to avoid travelling since 12.3. did not affect Lapland – some people wanted to have their skiing holiday! Only after the early closure of skiing resorts since 22.-23.3. visitors are sharply decreasing from Lapland – by the last Sunday (29.3.) there are 35% less people than the baseline Sunday (2.2.).

Figure 5. The relative change in the number of people spending time in municipality on 18th and 22nd March, compared to the baseline week. Declaring state of emergency starts to limit travelling to big cities in the south. Visitors leave the northern municipalities only when the ski resorts are to be closed.

The presence of people at the end of March with restrictions in place  – Winning and losing people 

Figure 6. The relative change in the presence of people between the last week of March (22.3. – 29.3.) and the baseline week (1.2. – 7.2.). At the end of March, the most severe restrictions were in place, including the closure of Uusimaa and the Lapland skiing resorts. The biggest decrease in the presence of people is seen in the smallest municipalities of the Åland archipelago, as municiplaities in Åland Islands had 25 % – 35 % less people compared to the baseline. Partly the change is explained by the stopping of the passing ferry traffic. The biggest increase in the presence of people took place in smaller municipalities that have a large amount of summer cottages. Despite travelling restrictions, some people escaped from big cities to their summer cottage. For example, Kustavi municipality hosted some 70-80 % more people during the last week of March compared to baseline. The summer cottage municipalities such as Puumala, Sysmä, Luhanka, Kuhmoinen and Taivassalo also gained people.

Figure 7. The presence of people in 30 biggest municipalities in Finland is clearly negative during the last week of March, compared to normal. During the Covid-19 restrictions, cities having the biggest commuting flows (Helsinki, Vantaa, Tampere, Turku, Vaasa) are the ones losing the most people. Oulu seems to be an exception here, but for a reason: Oulu municipality covers a very large area and thus commuters living within the municipality do not cross municipality borders. Some of the biggest municipalities have remained with the same number of people, including Kouvola, Salo, Lohja and Mikkeli. These municipalities have, however, also significant amount of summer cottages. In all cases, the presence of people during weekends is lower during the last week of March compared to the baseline week in the beginning of February.

 

Figure 8Uusimaa lockdown, day 1: The number of people in major cities and their surrounding regions is lower while many summer cottage municipalities are having more people than normally. If comparing to previous maps, the Uusimaa lockdown does not change the pattern drastically anymore at national level. People have limited their travelling already earlier.  

 

Next revealing mobility flows within Finland… Stay tuned!