Building ICOS RI: Integrated Carbon Observation System Research Infrastructure

logotransparent ICOSThe perturbed global biogeochemical cycles of the greenhouse gases are a major driving force of current and future climate change. The IPCC has concluded that a large part of the observed rise of global temperature is very likely due to increasing greenhouse gases in the atmosphere, driven by man-made emissions overtaking the natural cycles of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. The mission of ICOS RI is to enable research to understand the greenhouse gas budgets and perturbations. ICOS RI will

  • track carbon fluxes in Europe and adjacent regions by monitoring the ecosystems, the atmosphere and the oceans through integrated networks,
  • provide the long-term observations required to understand the present state and predict future behavior of the global carbon cycle and greenhouse gas emissions,
  • monitor and assess the effectiveness of carbon sequestration and/or greenhouse gases emission reduction activities on global atmospheric composition levels, including attribution of sources and sinks by region and sector.

Leading the negotiations to establish the European ICOS organization has been one of the major efforts of the division, together with the FMI, for the last couple of years. At the same time the Finnish national station network to monitor the greenhouse gas has been upgraded and built to match the ICOS standards. ICOS is currently in the transitional phase between the preparatory phase project and ICOS ERIC (European Research Infrastructure Consortium). The leader of the transitional phase is prof Timo Vesala. ICOS Director General recruitment process is going on and the new DG should start in the Head Office by the end of this year.

The structure of ICOS RI consists of the following parts:

  • Organized ICOS National Networks (such as ICOS-Finland, http://www.icos-infrastructure.fi)
  • ICOS Central Facilities (including Atmospheric Thematic Centre, Ecosystem Thematic Centre, Ocean Thematic Centre, Central Analytical Laboratory),
  • Its European legal entity, ICOS ERIC, including the Head Office and Carbon Portal. ICOS ERIC is the European legal entity to manage the activities of ICOS RI. ICOS ERIC is responsible for coordination, management, scientific, strategic and technical planning, and outreach of ICOS RI.

The Head Office of the ICOS ERIC legal entity and coordination of the ICOS RI is in Helsinki, Finland.

ICOS ERIC application has been submitted by the Finland’s permanent representation to the EU to the European Commission for step 1 evaluation in 21.6.2013. The EC will assess the application to ensure its compliance with the requirements of the ERIC Regulation. Four to five independent experts will assist the Commission in its assessment of the application’s compliance regarding the necessity, added value, access, mobility, knowledge transfer and dissemination of the RI. The next step will commence in autumn and include the signature process between the member and observer countries. ICOS ERIC is planned to be established early 2014.

Kuvankaappaus 2013-6-26 kello 12.15.01More information at: http://icos-infrastructure-transition.eu

Marjut Kaukolehto

The future of the Arctic

In September 2012, Arctic sea ice cover declined to a record low, over 3 million square kilometers below the long-term average for the month. Photo: IIASA Newsletter

IIASA researchers and Finnish policymakers and scientists met in May to outline a new research agenda addressing the challenges facing the Arctic region.

The seminar, jointly organized by IIASA, The Finnish Prime Minister’s Office, and the Academy of Finland, brought together stakeholders to share views, discuss and clarify the kind of Arctic research that is most needed to help guide the region through an uncertain future. Prof Markku Kulmala took part in the meeting, giving a Finnish view on climate change issues. Other speakers included Prof Pavel Kabat, Director of the International Institute for Applied Systems Analysis IIASA, Austria; Ambassador Hannu Halinen, Arctic Affairs at the Finnish Ministry for Foreign Affairs; Minister Counsellor, Deputy Head of Mission, Ulrik Tideström, Embassy of Sweden in Helsinki; Special Adviser Christine Daae Olseng, Coordinator for the Polar Research Programme, the Research Council of Norway; Senior Vice President and Chief Techology Officer Kari Knuutila, Outotec Oyj, Finland; Director Teija Tiilikainen, Finnish Institute of International Affairs, Finland; and Dr., Researcher Seija Tuulentie, Finnish Forest Research Institute.

“The meeting was an important step in establishing a real, efficient and useful dialogue between policy makers and scientists. Our Division is involved in many such efforts because we find it is in the best interest of society in every respect”, says Prof Kulmala.

Climate change has hit the Arctic region harder than any location on Earth. Over the last 30 years, the sea ice that covers the Arctic Ocean has declined by over 40% in summer, opening up new routes for shipping and making oil extraction and fishing more feasible in previously impassable waters. In the same time period, average temperatures have risen twice as fast in the Arctic as in lower latitudes. The resulting thawing of permafrost can undermine infrastructure, and the climate shifts may disrupt marine and terrestrial ecosystems, as well as the cultures that depend on them.

These changes open up new economic opportunities for resource extraction, shipping, and tourism in Arctic countries, but also pose many new questions about how to guide sustainable economic development and avoid environmental damage.

IIASA researchers focus on many issues relevant to the Arctic, including energy resources, air quality, and fisheries. The Institute also integrates scientific analyses into the assessment of policy options and future scenarios, a function that could be vital in the rapidly changing region, which is becoming ever more important on the global economic and geopolitical stage.

The meeting was webcast. For more information, visit the Academy of Finland Web site: http://www.aka.fi/arctic2013.

Tanja Suni
Adapted from IIASA Newsletter, Issue 14, June 2013

Land-atmosphere interactions in urban environment

Today, more than half of world’s population resides in urban areas, and this fraction is

View off the roof top of Dynamicum showing the SMEAR III measuring tower. Photo: Antti-Jussi Kieloaho.

further expected to increase rapidly in the next decades. Thus, a growing number of people will be affected by urban climate. The ability to understand the processes leading to this specific micro-climate is crucial for sustainable urban planning and our quality of life.

In our Centre of Excellence, the Micrometeorology group has been observing the interactions between urban surface and the above atmosphere at the urban measurement station SMEAR III (Station for Measuring Ecosystem Atmosphere Relations) since 2005. We measure the vertical exchange of energy, water, carbon dioxide and aerosol particles with the state-of-the-art methodology, the eddy covariance technique, at two locations:  on a measurement mast in semi-urban Kumpula and in downtown Helsinki on top of Hotel Torni.  In addition to these continuous measurements, our group also conducts short-term campaigns to observe the land-atmosphere exchange of N2O and volatile organic compounds (VOC) in this urban micro-climate.

The aim of these measurements is to collect long time series of simultaneously measured exchange processes to develop parameterizations for various atmospheric models, and to understand the processes and their changes in time. We are interested how the different urban land use types, particularly green areas, affect the vertical exchange of different variables. For example, as a rough estimate for carbon dioxide, Annika Nordbo, Leena Järvi, Sami Haapanala, Curtis Wood and Timo Vesala recently found that if natural areas cover over 80% of the urban surface, the uptake of vegetation exceeds the carbon dioxide emissions in the source area (Nordbo et al. 2012). Thus, our measurements provide information for urban planners as well as evaluation data for air quality, numerical weather forecast and climate models.

The measurements are also part of the new Urban Boundary-layer Atmosphere Network (UrBAN) which combines a variety of different instrumentation providing data of the interaction between an urban surface and the atmosphere at different spatial scales. The network is a joint effort by the Finnish Meteorological Institute and the Division of Atmospheric Sciences. We also collaborate with groups around the world working with urban flux measurements. The near future plan is to compare the turbulent energy balance fluxes from Beijing and Helsinki using both measurements and modelling approaches.

Webpages:
http://www.atm.helsinki.fi/SMEAR/index.php/smear-iii
http://urban.fmi.fi

Reference
A. Nordbo, L. Järvi, S. Haapanala, C.R. Wood and T. Vesala (2012b). Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys. Res. Lett., 39, L20802, doi: 10.1029/2012GL053087

Science for decision makers

IIASA is located in the Laxenburg Castle, former summer retreat of the Habsburgs imperial family outside Vienna, Austria.

One of the largest challenges in search for solutions for problems concerning climate, environment, or poverty, is to generate a fruitful communication between scientists and policy makers. Currently, I work in the MAG group (Mitigation of Air Pollution & Greenhouse Gases) at IIASA (International Institute for Applied Systems Analysis), an institute specialising in this communication. How does this communication work? And why is IIASA heard (or is it)? In the following I list a few (possible) reasons for the important role IIASA has in the international policy arena. Note that these thoughts are mine, and they are based on my experiences only.

–        History and tradition. IIASA was founded in the middle of the Cold War, in 1972, on the initiative of US president Lyndon Johnson and USSR premier Aleksei Kosygin (the era and the participants may explain the obscure name of the institute). The goal of IIASA was to promote co-operation between East and West in interdisciplinary scientific problems too wide for national institutions to handle. After the Cold War, the co-operation was extended from the East-West axis towards global, now crossing the boundaries between the first and third world. This background gives IIASA a strong label of neutrality. As a result of this history, IIASA scientists visit Brussels regularly to report our results to EU decision-makers. Similarly, representatives of the EU member countries regularly visit IIASA to update their information on, for example, the countries’ energy production and consumption, industry, transport, related technological objectives and future development.

–        Continuous funding. More than half of IIASA funding comes from the NMOs (National Member Organizations, Finnish representative being the Academy of Finland), which typically receive most of their funding from the governments they represent. There are currently 20 NMOs, from all the continents, including the most important players (USA, Russia, China, India, Brazil, Germany, Japan, Australia). Of course, there are also NMOs that have stopped their contribution for supporting IIASA, but the typically five year long contracts are, I guess, relatively stable under the current economics.

–        Policy-friendliness. IIASA transforms its scientific results into dollars/euros and human lives. The main output of the MAG program, the GAINS emission model, for example, gives out not only the efficiency of the technologies for decreasing emissions, but also their price. Furthermore, it estimates how many human lives can be saved by paying that price. And even further, it can be set to optimize the abatements of different emissions (different in sources and pollutants) in order to achieve the maximal benefit for a certain cost. And the data is available to anyone, registration as a user is free of charge. Another example would be the ‘7 shocks and Finland’ –project, ended a year ago, which analysed how the Finnish national economy would survive the economic shock situations.

Can we learn something from IIASA to help our own research in Finland to have an influence on political decisions? Organisations with similar goals in Finland include SYKE (Finnish Environmental Institute), the new national Climate Panel (Ilmastopaneeli), and the Forum for Environmental Information (Ympäristötiedon foorumi), although the two latter do not conduct research of their own. Similarly to IIASA, these organisations have been at least partly founded by decision makers in order to aggregate information necessary for their decisions.

These organisations are necessary because the purely academic results that universities provide are often too exact or theoretical for basing political decisions on. Thus, in order to have political influence, I find researchers and other well informed agents should, firstly, support (by actively offering information and, possibly, some resources) institutions such as IIASA, SYKE, the Climate Panel and the Forum for Environmental Information which are currently responsible for refining the scientific results to a form applicable to policy. Secondly, already at university level, we should put effort in offering simplified enough versions of our results to the media and thus to have also the non-academic people to hear and understand them: if the journalists do not understand the press-releases, the results never reach the news.

Most importantly, both above points must be carried out continuously, even if results are not immediately observable: at that very moment when the majority of decision makers feel that change is necessary (and voters are ready for it), we should be able to offer updated and comprehensive knowledge on feasible options, on their effectiveness and price. I guess very few of the reports by IIASA lead to immediate decisions, but when some decisions suddenly are to be made, it is too late to start scanning through ACP, JGR or BER and discussing what could be suggested for an action.

Pauli Paasonen (Division of Atmospheric Sciences; Guest Research Scholar at IIASA)

IIASA: http://www.iiasa.ac.at/

MAG ja GAINS: http://www.iiasa.ac.at/web/home/research/researchPrograms/Program-Overview.en.html

iLEAPS-Japan

Photo of Tsukuba rice fields in summer is by iLEAPS-Japan.

iLEAPS Executive Officer Tanja Suni and iLEAPS-Eurasia Executive Officer Hanna Lappalainen travelled to the 3rd International Symposium of Arctic Research (ISAR-3) in mid-January with the aim to create new collaboration between iLEAPS, iLEAPS-Eurasia, and Japanese and Russian scientists. One of the main points of collaboration was the Pan-Eurasian Experiment (PEEX), a new iLEAPS project coordinated by iLEAPS-Eurasia at the Division of Atmospheric Sciences in the University of Helsinki.  The Finnish delegation also included Joni Kujansuu, the Finland-Asia coordinator of the Division working part-time for iLEAPS.

The delegation met five members of the Science Committee of iLEAPS-Japan in a small satellite meeting on the second evening of the conference. All the Japanese researchers present at the meeting are leading scientists in fields very relevant to either the new iLEAPS theme Sustainable Managed Ecosystems or to the Pan-Eurasian Experiment or both; Drs Takeshi Ohta, Tetsuya Hiyama, and Ayumi Kotani have more than 15 years of experience with land-atmosphere-society interactions in Eastern Siberia (http://www.chikyu.ac.jp/rihn_e/project/C-07.html) whereas Dr Kentaro Hayashi leads a large manipulation experiment on Japanese rice paddies at the Tsukuba University, looking at the influence of CO2 enrichment on carbon, methane, and, uniquely in Japan, also on reactive nitrogen cycles throughout the year (Free Air CO2 Enrichment experiment FACE http://www.niaes.affrc.go.jp/outline/face/; with nitrogen, FACE-N). The website of iLEAPS-Japan is now available in English as well; this will enable European scientists to keep track of the many land-atmosphere research activities in Japan especially around ASIAFLUX, where the leader of iLEAPS-Japan, iLEAPS SSC member Dr Nobuko Saigusa and iLEAPS-Japan coordinator Sawako Tanaka work actively to widen the flux measurement network in Japan, Korea, and other parts of South-East Asia. iLEAPS-Japan and coordinator Joni Kujansuu will also conduct enquiries in the Philippines in order to organise regional land-atmosphere-society activities there; one of the first steps will be an iLEAPS-ASIAFLUX early-career scientist workshop planned to take place in the Philippines in 2014.

iLEAPS IPO and iLEAPS-Eurasia would like to extend a very warm thank you for the entire iLEAPS-Japan group for a very pleasant and fruitful meeting!

iLEAPS-Japan

Dr Nobuko Saigusa (Chair, iLEAPS SSC member)
Ms Sawako Tanaka (coordinator)
Centre for Global Environmental Research, National Institute for Environmental Studies (NIES)
Tsukuba, Ibaraki, Japan

http://ileaps-japan.org/

 

Land-atmosphere research for global sustainability

iLEAPS (Integrated Land Ecosystem – Atmosphere Processes Study) is an international research programme focussing on the land-atmosphere interface. The iLEAPS International Project Office (IPO) is hosted by our Division since the start, and for the past 8 years, iLEAPS has tried to advance multidisciplinary research on land-atmosphere interactions in an international setting. Now, the IPO consists of Tanja Suni, Alla Borisova, and 10% of Magdalena Brus.

The first phase of iLEAPS (2004 – 2014) has been a time of awareness-raising and establishing a united community of land-atmosphere scientists. Science conferences held in Helsinki (2003), Boulder (2006), Melbourne (2009), and Garmisch-Partenkirchen (2011) brought to light the importance of land-atmosphere processes and feedbacks in the Earth System, and a number of publications have shown the crucial role of the terrestrial ecosystems as regulators of climate and emphasised both the long-term net impacts of aerosols on clouds and precipitation. Furthermore, the iLEAPS community has drawn attention to the importance of realistic land-use representation in land surface modelling and to that of other feedback processes and regional characteristics in current climate models and recommended actions to improve them.

Human influence has always been an important part of iLEAPS science but in Phase II (2014-2024), iLEAPS will move further towards bridging the gap between socioeconomics and natural sciences to shed light on research questions advancing global sustainability. Phase II will see the foundation of new types of research groups such as the Pan-Eurasian Experiment (PEEX) that will include large-scale, long-term, coordinated observations and modelling in the Pan Eurasian region, especially to cover ground base, airborne and satellite observations together with global and regional models to find out different forcing and feedback mechanisms in the changing climate, taking into account the simultaneous societal and cultural change. PEEX is coordinated by the iLEAPS-Eurasia Office, run by  Hanna Lappalainen and Tuukka Petäjä.