Fire in boreal forests

Fire in eastern Lapland. Photo: Jukka Pumpanen

Forest fires have been the dominant disturbance regimes in boreal forests since the last Ice Age. Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. Forest fire activity is expected to increase significantly with changing climate, acting as a catalyst to a wide range of ecosystem processes controlling carbon storage in boreal forests. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following fire disturbance in Scots pine (Pinus sylvesteris) stands in the boreal forests of eastern Lapland (Värriö Strict Nature Reserve), Finland, by sampling soils and measuring soil respiration from sample plots established in a  chronosequence of different forest sites with 4 age classes, ranging from 2 years to 150 years after fire disturbance (2, 40, 60, 150 years after fire). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude.

Our preliminary results show that forest fire has a substantial effect on the C and N pool in the litter layer decaying forest top soil layer, but not in the humus layer and in mineral soil layers. Soil respiration and biomass development showed similar chronological response to the time since the forest fire indicating that substantial proportion of the respiration was originating from the very top of the soil.

Jukka Pumpanen and Frank Berninger
Department of Forest Ecology
University of Helsinki

A new book on Physical and Physiological Forest Ecology

A new book, Physical and Physiological Forest Ecology, is now available from Springer. The editors are Prof. Pertti Hari, Prof. Kari Heliövaara, and Dr. Liisa Kulmala.

This important contribution is the result of decades of theoretical thinking and high-value data collection by the University of Helsinki examining forest ecosystems in great detail. The ecology is dominated by a qualitative approach, such as species and vegetation zones, but in contrast quantitative thinking is characteristic in the exact sciences of physics and physiology. The editors have bridged the gap between ecology and the exact sciences with an interdisciplinary and quantitative approach. This book recognises this discrepancy as a hindrance to fruitful knowledge flow between the disciplines, and that physical and physiological knowledge has been omitted from forest ecology to a great extent. Starting with the importance of mass and energy flows in the interactions between forest ecosystems and their environment, the editors and authors offer a strong contribution to the pioneer H. T. Odum and his work from over 50 years ago.

This book introduces a holistic synthesis of carbon and nitrogen fluxes in forest ecosystems from cell to stand level during the lifetime of trees. Establishing that metabolism and physical phenomena give rise to concentration, pressure and temperature differences that generate the material and energy fluxes between living organisms and their environment. The editors and authors utilize physiological, physical and anatomical background information to formulate theoretical ideas dealing with the effects of the environment and the state of enzymes, membrane pumps and pigments on metabolism. The emergent properties play an important role in the transitions from detailed to more aggregate levels in the ecosystem. Conservation of mass and energy allow the construction of dynamic models of carbon and nitrogen fluxes and pools at various levels in the hierarchy of forest ecosystems.

Testing the predictions of these theories dealing with different phenomena in forest ecosystems was completed using the versatile and extensive data measured at SMEAR I and II (Stations for Measuring Ecosystem Atmosphere Relations) and at six additional stands in Finland, and five stands in Estonia. The theories are able to predict fluxes at different levels in the forest ecosystem gaining strong corroboration in the numerous field tests. Finally, the combined results from different hierarchical levels in the forest ecosystem form the physical and physiological theory of forest ecology.

Book available here

Mind-mapping nitrogen cycling in boreal forests

Mind-map of nitrogen cycling in boreal forests by the N group and collaborators: Dynamic nitrogen (N) pools processes in a boreal forest. Arrows stand for processes between the pools, red dots mark unknowns in the N cycle, and green dashed lines name ongoing or coming projects to solve some of the questions.

Reactive nitrogen (N) has a key role in the atmospheric chemistry and functioning of boreal forests. After years of studying the complex interactions of N cycling in boreal forests, Janne Korhonen et al. (2012) have calculated the N balance of the Hyytiälä SMEAR II Scots pine forest. The study shows that the forest ecosystem is a very efficient N recycler. Based on the new results, the atmospheric N deposition is much higher than previously estimated, and dry and wet organic deposition are important components of the total N input. However, although the pools, annual inputs, outputs and overall N cycling in the boreal forest have been resolved, new questions arise of the short-term dynamic N processes (such as amine formation via decomposition of soil organic nitrogen). These processes are important for the atmospheric chemistry and connect N even to climate effects of aerosols.

The N group at the Division of Atmospheric Sciences (Janne Korhonen, Antti-Jussi Kieloaho, and supervisors Mari Pihlatie and Jukka Pumpanen) are applying and developing new methods together with chemists, physicists and microbiologists. Current projects linking N and the atmosphere include studies on amine concentrations and fluxes, and the effect of fresh carbon input on soil organic nitrogen turnover (NITRGOFUNGI). In the future, our main focus in the nitrogen research will be to estimate reactive N emissions from soil and canopy, N transformations, and the fate of N deposited on to the forest canopy.

Contributors to the mind-map (working in the Division’s nitrogen group):

  • Jussi Heinonsalo (microbiology)
  • Maarit Raivonen (forest ecology)
  • Johanna Joensuu (forest ecology)
  • Timo Vesala (professor, micrometeorology)
  • Jukka Pumpanen (soil ecology)