Doctoral Course in Plant Responses to Climate Change

During the 3rd week of October at the University of Helsinki we ran an international course which considered how plant responses to light are mediated by environmental factors and the implications of climate change for plants’ capacity to adjust to their light environment.  The course, organised on behalf of the Doctoral Programme in Plant Sciences (DPPS), was attended by 13 visiting teachers and PhD students from all around Europe, in addition to the local participants from the University of Helsinki.

With the objective of understanding how plants scale their responses across levels of organisation, and respond to light over the appropriate time-scale for their environment, there were plenty of opportunities for students and teachers to develop inter-disciplinary knowledge and collaborations during the course.

We started the week considering photoreceptors and cell-cell signalling, and gradually scaled-up to look at the photosystem and chloroplast responses, physiological and biochemical mechanisms of photoprotection, the use of light in the timing of growth and flowering, and finally, plant traits, ecological and ecosystem levels.  A breadth of expertise was provided by an outstanding team of research leaders both from Helsinki and around Europe, giving really engaging lectures and stimulating discussions among the group.

International teachers and students enjoying the forest at Lammi Biological Station

The international participants rounded off the week with a visit to Lammi Biological Station to experience the Finnish forest, lake and hospitality!

 

UNEP EEAP panel preparing 2020 update

UNEP have put together a video explaining the work of the UNEP panels that assess ozone depletion, UV-B radiation and their interaction with climate change.

The UNEP Environmental Effects Assessment Panel in New Zealand

In late September, the UNEP Environmental Effects Assessment Panel met in Alexandra, New Zealand, home of Richard McKenzie, for our annual assessment of new research into the environmental effects of ozone depletion, UV radiation, and their implications with respect to climate change.

This year Janet Bornman, Paul Barnes, Carlos Ballaré, Sharon Robinson and myself were particularly tasked with understanding how plant-level effects on biodiversity and key ecological processes scale-up to the ecosystem level.  We also focussed on crosscutting themes affecting not only terrestrial ecosystems, but mankind and the entire global environment.

A traditional Pōwhiri – Māori welcome – for the UNEP panel.

The capacity for us to address ozone depletion through the successful implementation of the Montreal Protocol, which limited the production of ozone depleting chemicals, can be seen as a flagship example of our capacity to address global environmental problems through concerted international action.  In this respect, one of the panel’s responsibilities in future reports will be to provide quantitative comparisons of how our environment differs today from what it would have looked like without the Montreal Protocol.

The World Avoided – Projection of the UV index in March 2065 with (left) and without (right) the implementation of the Montreal Protocol – from Barnes et al., (2019) Nature Sustainability 2, 569–579 https://www.nature.com/articles/s41893-019-0314-2

Effective supplementation of the sunlight available to plants in greenhouses

Large seasonal changes in sunlight and its spectral composition are challenging for greenhouse growers in commercial horticulture. This is particularly true for growers at high latitudes like Finland.

Better informing growers of the light environment within greenhouses throughout the year and how the of use of lamps with bespoke spectra, and output optimised for specific crop species, allows efficiency saving to be made.

Blue:green (B:G) ratio in sunlight , in a polytunnel and glass greenhouse in Raleigh, North Carolina, USA.

At GreenSys 2019 in Anger, France 16-20 June 2019, Titta Kotilainen will present our research showing how greenhouse lighting subjects plants to different light spectra for photosynthesis depending on the time of year and location of greenhouses.

Titta Kotilainen will discuss how better selection and management of the light environment, through greenhouse materials, shade screens and insect nets, and appropriate lighting, improves crop yield and reduces energy costs.

  • Robson TM, Kotilainen TK. (2018) Transmittance of spectral irradiance by climate screens and nets used in horticulture and agriculture (Version 1.1.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1561317
  • Kotilainen TK, Robson TM, Hernández R. (2018) Light quality characterization under climate screens and shade nets for controlled-environment agriculture. PLoS ONE 13(6): e0199628. https://doi.org/10.1371/journal.pone.0199628

Improving the use of sunlight in plant production environments

 

Last Tuesday I presented the results of our Key Funding Academy of Finland Project to enhance the practical application of our research at an event for policy makers and civil servants at Finlandia Hall, Helsinki.

Our project helps farmers and growers in the horticultural industry better manage the light that plants receive in greenhouses and polytunnels through selecting appropriate material for windows, nets and screens. It was one of just nine projects selected for poster-pitch presentation at this event which marks the culmination of this initiative. All nine are available to watch on the Academy of Finland’s website.

 

Understanding contemporary UV effects on pollen to reconstruct UV exposure over geological time

We recently traveled to Austria to help set-up our collaborators’ experiments monitoring the effects of UV-B radiation exposure on Pinus cembra pollen in the mountains above Innsbruck.  If we can understand how exposure to UV radiation affects the accumulation of UV-absorbing compounds in pollen today, we may be able to calibrate the concentrations of these compounds found in ice- and sediment cores used in climatic reconstructions. This information potentially will allow palyontologists to understand how UV radiation changed over geological time and what the implications of these changes might have been for the Earth’s ecosystems. By better understanding past climate we will be better prepared to forecast how modern-day changes in UV radiation might affect the Earth’s ecosystems.

Here we take parallel measurements with broadband UV-B sensors and a spectroradiometer next to a specimen pine tree during the period before flowering.

Find up more in last years UNEP update.

Effect of horticultural shade screens and nets on spectral quality

Shade screen and net are used to control the environment of plants growing in polytunnels and greenhouses but they have some unintended consequences in modifying the spectrum of light that plants receive.

Titta Kotilainen has a new article out describing these effects and what they imply for the use and selection of these products. Check it out in PLOS one – HERE!

We recently spent the week at GreenTech Expo in Amsterdam finding out more about innovations in LED lighting and spectral manipulation of the light used in plant production scenarios. In response we are preparing an extended a continuation of our research into spectral quality with an extended dataset of screen and net assessments.

Finnish Growers’ Association highlight our research into the greenhouse light environment

 

Some results from our Academy of Finland Key Funding project were recently presented by Titta Kotilainen in the Finnish Growers’ Association “Puutarha & Kauppa” magazine. Climate screens that are typically used inside greenhouses to manage humidity and temperature alter light transmission, resulting in large differences in both the fraction of irradiance attenuated and spectral ratios received underneath.

Different climate-control screens, that are superficially very similar in terms of their appearance and texture, have very different effects on the light environment, which would go unnoticed without this sort of measurement. Spectral characterization of this nature is required to interpret the results of studies examining plant responses to different greenhouse screens. Material manufacturers, growers, and horticultural consultants can all benefit from these data aiding the selection of material to better match the desired end-results.