The APOSTLE collaboration

The APOSTLE collaboration is “A Project Of Simulating The Local Environment”.

An offshoot of the EAGLE collaboration, it was started by myself, Carlos Frenk, Azadeh Fattahi and Julio Navarro in 2013, and has now grown to a large international collaboration. To date, more than 20 papers based directly on APOSTLE data have been written by more than 30 different co-authors from Argentina, Belgium, Canada, Chile, China, Finland, Germany, Iran, Ireland, Italy, Mexico, the Netherlands, Poland, Romania, Switzerland, the UK and the US.

Click below for a list of APOSTLE papers published to date. We also keep a repository for ongoing projects (password required). If you are interested in using APOSTLE data for your own project, please send me an email (till+DOT+sawala+AT+helsinki+DOT+fi)

  • The low abundance and insignificance of dark discs in simulated Milky Way galaxies 09/2016
    Schaller, Matthieu; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Oman, Kyle A.; Sawala, Till
    We investigate the presence and importance of dark matter discs in a sample of 24 simulated Milky Way galaxies in the APOSTLE project, part of the EAGLE programme of hydrodynamic simulations in ΛCDM cosmology. It has been suggested that a dark disc in the Milky Way may boost the dark matter density and modify the velocity modulus relative to a smooth halo at the position of the Sun, with ramifications for direct detection experiments. From a kinematic decomposition of the dark matter and a real space analysis of all 24 haloes, we find that only one of the simulated Milky Way analogues has a detectable dark disc component. This unique event was caused by a merger at late time with an LMC-mass satellite at very low grazing angle. Considering that even this rare scenario only enhances the dark matter density at the solar radius by 35 per cent and affects the high-energy tail of the dark matter velocity distribution by less than 1 per cent, we conclude that the presence of a dark disc in the Milky Way is unlikely, and is very unlikely to have a significant effect on direct detection experiments.
  • Dark matter-radiation interactions: the structure of Milky Way satellite galaxies 09/2016, 2016MNRAS.461.2282S
    Schewtschenko, J. A.; Baugh, C. M.; Wilkinson, R. J.; Bœhm, C.; Pascoli, S.; Sawala, T.
    Abstract In the thermal dark matter (DM) paradigm, primordial interactions between DM and Standard Model particles are responsible for the observed DM relic density. In Bœhm et al., we showed that weak-strength interactions between DM and radiation (photons or neutrinos) can erase small-scale density fluctuations, leading to a suppression of the matter power spectrum compared to the collisionless cold DM (CDM) model. This results in fewer DM subhaloes within Milky Way-like DM haloes, implying a reduction in the abundance of satellite galaxies. Here we use very high-resolution N-body simulations to measure the dynamics of these subhaloes. We find that when interactions are included, the largest subhaloes are less concentrated than their counterparts in the collisionless CDM model and have rotation curves that match observational data, providing a new solution to the `too big to fail’ problem
  • The oldest and most metal poor stars in the APOSTLE Local Group simulations 09/2016, arXiv:1609.05214
    Starkenburg, Else; Oman, Kyle A.; Navarro, Julio F.; Crain, Robert A.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaye, Joop
    We examine the spatial distribution of the oldest and most metal poor stellar populations of Milky Way-sized galaxies using the APOSTLE cosmological hydrodynamical simulations of the Local Group. In agreement with earlier work, we find strong radial gradients in the fraction of the oldest (tform < 0.8 Gyr) and most metal poor ([Fe/H]< -2.5) stars, both of which increase outwards. The most metal poor stars form over an extended period of time; half of them form after z = 5.3, and the last 10% after z = 2.8. The age of the metal poor stellar population also shows significant variation with environment; a high fraction of them are old in the galaxy’s central regions and an even higher fraction in some individual dwarf galaxies, with substantial scatter from dwarf to dwarf. Overall, over half of the stars that belong to both the oldest and most metal-poor population are found outside the solar circle. Somewhat counter-intuitively, we find that dwarf galaxies with a large fraction of metal poor stars that are very old are systems where metal poor stars are relatively rare, but where a substantial old population is present. Our results provide guidance for interpreting the results of surveys designed to hunt for the earliest and most pristine stellar component of our Milky Way.
  • Shaken and Stirred: The Milky Way’s Dark Substructures 09/2016 2016arXiv160901718S
    Sawala, Till; Pihajoki, Pauli; Johansson, Peter H.; Frenk, Carlos S.; Navarro, Julio F.; Oman, Kyle A.; White, Simon D. M.
    The predicted abundance and properties of the low-mass substructures embedded inside larger dark matter haloes differ sharply among alternative dark matter models. Too small to host galaxies themselves, these subhaloes may still be detected via gravitational lensing, or via perturbations of the Milky Way’s globular cluster streams and its stellar disk. Here we use the Apostle cosmological simulations to predict the abundance and the spatial and velocity distributions of subhaloes in the range 10^6.5-10^8.5 solar masses inside haloes of mass ~ 10^12 solar masses in ΛCDM. Although these subhaloes are themselves devoid of baryons, we find that baryonic effects are important. Compared to corresponding dark matter only simulations, the loss of baryons from subhaloes and stronger tidal disruption due to the presence of baryons near the centre of the main halo, reduce the number of subhaloes by ~ 1/4 to 1/2, independently of subhalo mass, but increasingly towards the host halo centre. We also find that subhaloes have non-Maxwellian orbital velocity distributions, with centrally rising velocity anisotropy and positive velocity bias which reduces the number of low-velocity subhaloes, particularly near the halo centre. We parameterise the predicted population of subhaloes in terms of mass, galactocentric distance, and velocities. We discuss implications of our results for the prospects of detecting dark matter substructures and for possible inferences about the nature of dark matter.
  • The properties of “dark” ΛCDM halos in the Local Group arXiv:1609.01301
    Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Sawala, Till; Oman, Kyle; Fattahi, Azadeh; Schaller, Matthieu; Schaye, Joop; Crain, Rob; Theuns, Tom
    We examine the baryon content of low-mass ΛCDM halos (m200 = 10^8 – 5×10^9 solar masses) using the APOSTLE cosmological hydrodynamical simulations. Most of these systems are free of stars and have a gaseous content set by the combined effects of cosmic reionization, which imposes a mass-dependent upper limit, and of ram pressure stripping, which reduces it further in high-density regions. Halos mainly affected by reionization RELHICs; REionization-Limited HI Clouds) inhabit preferentially low-density regions and make up a population where the gas is in hydrostatic equilibrium with the dark matter potential and in thermal equilibrium with the ionizing UV background. Their thermodynamic properties are well specified, and their gas density and temperature profiles may be predicted in detail. Gas in RELHICs is nearly fully ionized but with neutral cores that span a large range of HI masses and column densities and have negligible non-thermal broadening. We present predictions for their characteristic sizes and central column densities: the massive tail of the distribution should be within reach of future blind HI surveys. Local Group RELHICs (LGRs) have some properties consistent with observed Ultra Compact High Velocity Clouds (UCHVCs) but the sheer number of the latter suggests that most UCHVCs are not RELHICs. Our results suggest that LGRs (i) should typically be beyond 500 kpc from the Milky Way or M31; (ii) have positive Galactocentric radial velocities; (iii) HI sizes not exceeding 1 kpc, and (iv) should be nearly round. The detection and characterization of RELHICs would offer a unique probe of the small-scale clustering of cold dark matter.
  • Missing dark matter in dwarf galaxies? 08/2016, 2016MNRAS.460.3610O
    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.
    We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in ΛCDM haloes that collect into galaxies. This `galaxy formation efficiency’ correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to 10 times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency – highly unlikely given their shallow potential wells – or their dark matter content is much lower than expected from ΛCDM haloes. This `missing dark matter’ is reminiscent of the inner mass deficit of galaxies with slowly rising rotation curves, but cannot be explained away by star formation-induced `cores’ in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard ΛCDM paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.
  • The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem arXiv:1607.06479
    Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Frenk, Carlos S.; Sales, Laura V.; Oman, Kyle; Schaller, Matthieu; Wang, Jie
    We examine the dark matter content of satellite galaxies in Lambda-CDM cosmological hydrodynamical simulations of the Local Group from the APOSTLE project. We find excellent agreement between simulation results and estimates for the 9 brightest Galactic dwarf spheroidals (dSphs) derived from their stellar velocity dispersions and half-light radii. Tidal stripping plays an important role by gradually removing dark matter from the outside in, affecting in particular fainter satellites and systems of larger-than-average size for their luminosity. Our models suggest that tides have significantly reduced the dark matter content of Can Ven I, Sextans, Carina, and Fornax, a prediction that may be tested by comparing them with field galaxies of matching luminosity and size. Uncertainties in observational estimates of the dark matter content of individual dwarfs have been underestimated in the past, at times substantially. We use our improved estimates to revisit the `too-big-to-fail’ problem highlighted in earlier N-body work. We reinforce and extend our previous conclusion that the APOSTLE simulations show no sign of this problem. The resolution does not require `cores’ in the dark mass profiles, but, rather, relies on revising assumptions and uncertainties in the interpretation of observational data and accounting for `baryon effects’ in the theoretical modelling.
  • What to expect from dynamical modelling of galactic haloes, 05/2016, arXiv:1605.09386
    Wang, Wenting; Han, Jiaxin; Cole, Shaun; Frenk, Carlos; Sawala, Till
    Many dynamical models of the Milky Way halo require the assumption that the distribution function of a tracer population should be independent of time (i.e., a steady state distribution function). We study the limitations of such modelling by applying a general dynamical model with minimal assumptions to a large sample of galactic haloes from cosmological N-body and hydrodynamical simulations. Using dark matter particles as dynamical tracers, we find that the systematic biases in the measured mass and concentration parameters typically have an amplitude of 25% to 40%. When stars are used as tracers, however, the biases can be as large as a factor of 2-3. The biases are not reduced by increasing the tracer sample size and vary stochastically from halo to halo. These biases can be equivalently interpreted as underestimated statistical noise caused by correlated phase-space structures that violate the steady state assumption. The number of independent phase-space structures inferred from the bias level sets a limiting sample size beyond which a further increase no longer significantly improves the accuracy of dynamical inferences. This number is ~40 for halo stars and ~ 1000 for dark matter particles beyond 20 kpc of the halo centre. The bias level is determined by the halo merger history and also correlates with the environment and shape of the halo. We also study the effects of various other technical factors on the modelling, such as the radial cut and halo structure parametrization. Our conclusions apply generally to any steady-state model.
  • The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles,04/2016, 2016MNRAS.457.1931S
    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Furlong, Michelle; Helly, John. C.; Jenkins, Adrian; Oman, Kyle A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Trayford, James; White, Simon D. M.
    The Local Group galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the `lambda cold dark matter’ (ΛCDM) model: there are far fewer satellite galaxies than substructures in CDM haloes (the `missing satellites’ problem); dwarf galaxies seem to avoid the most massive substructures (the `too-big-to-fail’ problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the `planes of satellites’ problem). Here we present results from APOSTLE (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of 12 volumes selected to match the kinematics of the Local Group (LG) members. Applying the EAGLE code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of haloes and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to the MWs, confirming that such a configuration is not unexpected in ΛCDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide estimates of the maximum circular velocity for the haloes of nine MW dwarf spheroidals.
  • The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection, 03/2016, 2016MNRAS.457..844F
    Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Frenk, Carlos S.; Oman, Kyle A.; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Jenkins, Adrian
    We use a large sample of isolated dark matter halo pairs drawn from cosmological N-body simulations to identify candidate systems whose kinematics match that of the Local Group (LG) of galaxies. We find, in agreement with the `timing argument’ and earlier work, that the separation and approach velocity of the Milky Way (MW) and Andromeda (M31) galaxies favour a total mass for the pair of ˜5 × 10^12 solar masses. A mass this large, however, is difficult to reconcile with the small relative tangential velocity of the pair, as well as with the small deceleration from the Hubble flow observed for the most distant LG members. Halo pairs that match these three criteria have average masses a factor of ˜2 times smaller than suggested by the timing argument, but with large dispersion. Guided by these results, we have selected 12 halo pairs with total mass in the range 1.6-3.6 × 10^12 solar masses for the APOSTLE project (A Project Of Simulating The Local Environment), a suite of hydrodynamical resimulations at various numerical resolution levels (reaching up to 10^4 solar masses per gas particle) that use the subgrid physics developed for the EAGLE project. These simulations reproduce, by construction, the main kinematics of the MW-M31 pair, and produce satellite populations whose overall number, luminosities, and kinematics are in good agreement with observations of the MW and M31 companions. The APOSTLE candidate systems thus provide an excellent testbed to confront directly many of the predictions of the Λ cold dark matter cosmology with observations of our local Universe.
  • Knowing the unknowns: uncertainties in simple estimators of dynamical masses, 03/2016, arXiv:1603.04443
    Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; Eke, Vincent R.; Navarro, Julio F.; Sawala, Till; Schaller, Matthieu; Fattahi, Azadeh; Oman, Kyle A.; Theuns, Tom
    The observed stellar kinematics of dispersion-supported galaxies are often used to measure dynamical masses. Recently, several analytical relationships between the stellar line-of-sight velocity dispersion, the projected (2D) or deprojected (3D) half-light radius, and the total mass enclosed within the half-light radius, relying on the spherical Jeans equation, have been proposed. Here, we make use of the APOSTLE cosmological hydrodynamical simulations of the Local Group to test the validity and accuracy of such mass estimators for both dispersion and rotation-supported galaxies, for field and satellite galaxies, and for galaxies of varying masses, shapes, and velocity dispersion anisotropies. We find that the mass estimators of Walker et al. and Wolf et al. are able to recover the masses of dispersion-dominated systems with little systematic bias, but with a one-sigma scatter of 25 and 23 percent, respectively. The error on the estimated mass is dominated by the impact of the 3D shape of the stellar mass distribution, which is difficult to constrain observationally. This intrinsic scatter becomes the dominant source of uncertainty in the masses estimated for galaxies like the dwarf spheroidal (dSph) satellites of the Milky Way, where the observational errors in their sizes and velocity dispersions are small. Such scatter also affects the inner density slopes of dSphs derived from multiple stellar populations, relaxing the significance with which Navarro-Frenk-White profiles may be excluded. Finally, we derive a new optimal mass estimator that removes the residual biases and achieves a statistically significant reduction in the scatter to 20 percent overall for dispersion-dominated galaxies, allowing more precise and accurate mass estimates.
  • The chosen few: the low-mass haloes that host faint galaxies, 02/2016, 2016MNRAS.456…85S
    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Theuns, Tom; Bower, Richard G.; Crain, Robert A.; Furlong, Michelle; Jenkins, Adrian; Schaller, Matthieu; Schaye, Joop
    Since reionization prevents star formation in most haloes less massive than 3 × 10^9  solar masses, dwarf galaxies only populate a fraction of existing dark matter haloes. We use hydrodynamic cosmological simulations of the Local Group to study the discriminating factors for galaxy formation in the early Universe and connect them to the present-day properties of galaxies and haloes. A combination of selection effects related to reionization, and the subsequent evolution of haloes in different environments, introduces strong biases between the population of haloes that host dwarf galaxies, and the total halo population. Haloes that host galaxies formed earlier and are more concentrated. In addition, haloes more affected by tidal stripping are more likely to host a galaxy for a given mass or maximum circular velocity, vmax, today. Consequently, satellite haloes are populated more frequently than field haloes, and satellite haloes of 10^8 – 10^9 solar masses or vmax of 12-20 km/s, compatible with stellar kinematics of Local Group dwarf spheroidals, have experienced a greater than average reduction in both mass and vmax after infall. They are on closer, more radial orbits with higher infall velocities and earlier infall times. Together, these effects make dwarf galaxies highly biased tracers of the underlying dark matter distribution.
  • Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes, 02/2016, 2016MNRAS.455.4442S
    Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Calore, Francesca; Bertone, Gianfranco; Bozorgnia, Nassim; Crain, Robert A.; Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Schaye, Joop
    We obtain predictions for the properties of cold dark matter annihilation radiation using high-resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the `Evolution and Assembly of GaLaxies and their Environments’ (EAGLE) programme. Galactic haloes in the simulation have significantly different properties from those assumed in the `standard halo model’ often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between r ≈ 1.5 kpc and r ≈ 10 kpc. At smaller radii, r ≲ 1.5 kpc, the haloes develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30 per cent as the mass resolution is increased by a factor 150. The inner regions of the haloes are almost perfectly spherical (axis ratios b/a > 0.97 within r = 1 kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with γ-ray observations at large Galactic latitudes (b ≳ 3°). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.
  • The low-mass end of the baryonic Tully-Fisher relation, 02/2016, arXiv:1602.02155
    Sales, Laura V.; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Ismael; Abadi, Mario G.; Bower, Richard; Crain, Robert A.; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; White, Simon D. M.
    The scaling of disk galaxy rotation velocity with baryonic mass (the “Baryonic Tully-Fisher” relation, BTF) has long confounded galaxy formation models. It is steeper than the M ~ V^3 scaling relating halo virial masses and circular velocities and its zero point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may in principle be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in LCDM simulations that match the size and number of galaxies as a function of stellar mass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. Despite the strong feedback, the scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally-supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below ~40 km/s seem to deviate from this prediction. We discuss observational biases and modeling uncertainties that may help to explain this disagreement in the context of LCDM models of dwarf galaxy formation.
  • Planes of satellite galaxies: when exceptions are the rule, 12/2015, 2015MNRAS.452.3838C
    Cautun, Marius; Bose, Sownak; Frenk, Carlos S.; Guo, Qi; Han, Jiaxin; Hellwing, Wojciech A.; Sawala, Till; Wang, Wenting
    The detection of planar structures within the satellite systems of both the Milky Way (MW) and Andromeda (M31) has been reported as being in stark contradiction to the predictions of the standard cosmological model (Λ cold dark matter – ΛCDM). Given the ambiguity in defining a planar configuration, it is unclear how to interpret the low incidence of the MW and M31 planes in ΛCDM. We investigate the prevalence of satellite planes around galactic mass haloes identified in high-resolution cosmological simulations. We find that planar structures are very common, and that ˜10 per cent of ΛCDM haloes have even more prominent planes than those present in the Local Group. While ubiquitous, the planes of satellite galaxies show a large diversity in their properties. This precludes using one or two systems as small-scale probes of cosmology, since a large sample of satellite systems is needed to obtain a good measure of the object-to-object variation. This very diversity has been misinterpreted as a discrepancy between the satellite planes observed in the Local Group and ΛCDM predictions. In fact, ~10 per cent of ΛCDM galactic haloes have planes of satellites that are as infrequent as the MW and M31 planes. The look-elsewhere effect plays an important role in assessing the detection significance of satellite planes and accounting for it leads to overestimating the significance level by a factor of 30 and 100 for the MW and M31 systems, respectively.
  • The unexpected diversity of dwarf galaxy rotation curves, 10/2015, 2015MNRAS.452.3650O
    Oman, Kyle A.; Navarro, Julio F.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; White, Simon D. M.; Bower, Richard; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
    We examine the circular velocity profiles of galaxies in Λ cold dark matter (CDM) cosmological hydrodynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them with a compilation of observed rotation curves of galaxies spanning a wide range in mass. The shape of the circular velocity profiles of simulated galaxies varies systematically as a function of galaxy mass, but shows remarkably little variation at fixed maximum circular velocity. This is especially true for low-mass dark-matter-dominated systems, reflecting the expected similarity of the underlying CDM haloes. This is at odds with observed dwarf galaxies, which show a large diversity of rotation curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves that agree well with simulations, others do not. The latter are systems where the inferred mass enclosed in the inner regions is much lower than expected for CDM haloes and include many galaxies where previous work claims the presence of a constant density `core’. The `cusp versus core’ issue is thus better characterized as an `inner mass deficit’ problem than as a density slope mismatch. For several galaxies, the magnitude of this inner mass deficit is well in excess of that reported in recent simulations where cores result from baryon-induced fluctuations in the gravitational potential. We conclude that one or more of the following statements must be true: (i) the dark matter is more complex than envisaged by any current model; (ii) current simulations fail to reproduce the diversity in the effects of baryons on the inner regions of dwarf galaxies; and/or (iii) the mass profiles of `inner mass deficit’ galaxies inferred from kinematic data are incorrect.
  • Bent by baryons: the low-mass galaxy-halo relation, 04/2015, 2015MNRAS.448.2941S Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Furlong, Michelle; Jenkins, Adrian; McCarthy, Ian G.; Qu, Yan; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
    The relation between galaxies and dark matter haloes is of vital importance for evaluating theoretical predictions of structure formation and galaxy formation physics. We use hydrodynamic cosmological simulations of the Local Group to show that the widely used method of abundance matching based on dark matter only simulations fails at the low-mass end because two of its underlying assumptions are broken: only a small fraction of low-mass (<10<SUP>9.5</SUP> M<SUB>⊙</SUB>) haloes host a visible galaxy, and baryon effects lower their growth rate. In this regime, reliance on dark matter only simulations for abundance matching is inappropriate and can lead to incorrect results. We find that the reported discrepancy between observational estimates of the halo masses of dwarf galaxies and the values predicted by abundance matching does not point to a failure of Λ cold dark matter, but simply to a failure to account for baryonic effects. Our results also imply that the Local Group contains only a few hundred observable galaxies in contrast with the thousands of faint dwarfs that abundance matching would suggest. We show how relations derived from abundance matching can be corrected, so that they can be used self-consistently to calibrate models of galaxy formation.

Leave a Reply

Your email address will not be published. Required fields are marked *