Tag Archives: Carbon

Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates

Glaciers are retreating and predatory invertebrates rapidly colonize deglaciated, barren ground. The paradox of establishing predators before plants and herbivores has been explained by wind-driven input of invertebrate prey. Here we present an alternative explanation and a novel glacier foreland food web by showing that pioneer predators eat locally produced midges containing 21,000 years old ancient carbon released by the melting glacier. Ancient carbon was assimilated by aquatic midge larvae, and terrestrial adults achieved a radiocarbon age of 1040 years. Terrestrial spiders, harvestmen and beetles feeding on adult midges had radiocarbon ages of 340–1100 years. Water beetles assumed to eat midge larvae reached radiocarbon ages of 1100–1200 years. Because both aquatic and terrestrial pioneer communities use ancient carbon, the term “primary succession” is questionable in glacier forelands. If our “old” invertebrates had been collected as subfossils and radiocarbon dated, their age would have been overestimated by up to 1100 years.



Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum


Wright, J. D. & Schaller, M. F., 2013: Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.

–Proceedings of the National Academy of Sciences: Vol. 110, #40, pp. 15908- 15913 [doi: 10.1073/pnas.1309188110]


The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).