ENVISION: Oil-water interface characterization

Ever wonder why your salad dressing can be so smooth, even though it is basically made of oil and vinegar? Vinaigrette, like mayonnaise, milk, and ice cream, are examples of what we call emulsions. Commonly used in the pharmaceutical, cosmetics, biotechnology and food industries, emulsions let us enjoy liquid products that feel good to our senses, while at the same time they protect bioactive compounds contained inside the mixture. They are formed by mixing two liquids that do not spontaneously mix (typically oil and water) and stabilized by a surfactant. The behaviour and properties of the surfactant on the border between oil and water determine the stability of emulsions, but the relationship between how the surfactants arrange themselves on the oil droplets and how they stabilize the mixture is still unknown. Our project, called “ENVISION”, is ongoing to provide insights about interfacial properties of emulsions. This project is funded by The Academy of Finland (1.9.2019–31.8.2023), led by Assistant Professor Kirsi Mikkonen, and conducted by Postdoctoral Researcher Thao Minh Ho and Doctoral Student Felix Abik.

In this project, we will be using a technique called atomic force microscopy (AFM). Imagine entering a dark room; your first instinct would be to look for the light switch on the wall by touching it with your hand, feeling the surface until you found the switch. With AFM, we are doing the same thing, but with a much smaller ‘hand’ to ‘touch’ the surface of our emulsions and make an image of what is happening on the droplets. We have successfully investigated trials on the preparation of emulsions with different surfactants. Next steps will be the characterization of the stability of emulsions. This will be followed by development of an innovative method for interfacial characterization using AFM. The result of this project will potentially open new scenarios in manipulating and designing intelligent delivery systems in forms of emulsions, for many bioactive compounds in numerous applications in technology and life sciences.

Photo: Felix and his doctoral thesis committee (who met for the first time just before the COVID-19 outbreak spread in Finland). From left to right: Postdoctoral Researcher Thao Minh Ho, University Researcher Laura Flander, Professor Orlando Rojas (Aalto University), Assistant Professor Kirsi Mikkonen (PI), University Lecturer Marianna Kemell, and Doctoral Student Felix Abik.

Have FUN with OLEOgels! New HiPOC grant for turning oleogels into functional materials

In December 2019, Fabio Valoppi obtained the Proof of Concept grant (HiPOC) from the Helsinki Institute of Life Science (HiLIFE) of the University of Helsinki for his project entitled “Functional oleogels with health enhancing ability (FUN-OLEO)”. Within this project, Fabio and his collaborators are transforming oleogels into novel functional materials using an unusual route.

Oleogels are considered the “fat of the future” and were developed to replace saturated, hydrogenated and trans fats in food products. They contain high fractions of liquid oil (85 – 99.5%) entrapped in a network made of structuring molecules. However, oleogels have some drawbacks that slow down their application in certain type of foods. Fabio came up with a novel concept that could extend oleogels’ applicability to a broader range of food products while introducing a new health enhancing ability: this is how you kill two pigeons with one stone!

The purpose of this HiPOC grant is to accelerate the patenting of Fabio’s novel idea. Unfortunately, we cannot reveal too much about the idea behind the project at this time. We can only say that we already obtained encouraging results! Stay tuned for more updates and to find out how this project will evolve.

Doing GOOD

As highlighted in our previous blog post, food and pharmaceutical industries could utilize birch- and spruce-derived hemicelluloses and lignin in future. In addition to their promising emulsion stabilizing properties, the fiber- and polyphenol-rich birch and spruce extracts could be good for our gut health. Therefore, the effects of wood-derived extracts on gut health are the focus of the GOOD project. This project has recently received funding from the Jane and Aatos Erkko Foundation. Doctoral student Emma Kynkäänniemi, postdoctoral researcher Maarit Lahtinen, university lecturer Anne-Maria Pajari and assistant professor Kirsi Mikkonen form a good project team!

A group of rats got an exciting addition to their diets: polyphenol-rich birch extract. The diet was tasty and all the rats gained weight normally. Next, we will investigate the effects of the feeding period on gut health, analyzing, for example, the gut microbiota and their metabolites from the fecal samples of the rats. The results of the GOOD project will bring us many steps closer to the goal of transforming wood into food.

New findings on wood extracts and lignin nanoparticles

A recent research article by Maarit Lahtinen et al. (https://doi.org/10.3389/fchem.2019.00871) sheds new light on the chemical structures that make wood extracts so efficient in emulsion stabilization. Pressurized hot water extracted hemicelluloses, spruce galactoglucomannans (GGM) and birch glucuronoxylans, contain residual lignin. Some of that lignin may be covalently linked with the hemicellulose structures via lignin carbohydrate complexes. Presence of lignin greatly improves the oxidative stability of emulsions.

Mamata Bhattarai et al. (https://doi.org/10.1016/j.foodhyd.2019.105607) studied how spruce GGM behave in water. GGM show tendency to form physical assemblies during storage, meaning that dissolved hemicelluloses associate with each other and form clusters. This behavior depends on pH, so it is important to take into account when designing future products from GGM.

Alkali-extracted lignin precipitates in acidic pH. Melissa Agustin et al. (https://doi.org/10.1021/acssuschemeng.9b05445) took advantage of this property and developed lignin nanoparticles, with the help of a rapid ultrasonication treatment. The resulting particles were spherical, negatively charged, and very stable in suspensions and emulsions. The underexploited wood components, hemicelluloses and lignin, have promising properties that could be useful in chemicals, pharmaceuticals, and food.

Who wants to be (ERC) millionaire?

The FoMSci group leader, Kirsi Mikkonen, received the prestigious and extremely competitive European Research Council Consolidator Grant (ERC-CoG) for her innovative and challenging project entitled: “Green Route to Wood-Derived Janus Particles for Stabilized Interfaces – PARTIFACE”. The project is about developing a novel type of Janus particles, that are bi-facial particles where the two “faces” of the particle have opposite properties. Imagine an apple, half red and sweet and half green and sour, that is a Janus apple! Kirsi will develop these new particles using renewable resources. Kirsi’s Janus particles will be able to stabilize emulsions from a physical and chemical perspective, meaning that the emulsions will look and smell the same even after months of storage.

The splendid news came in a very cryptic email from the Council. “I got the ERC grant” Kirsi said staring amazed at her phone. The rumor spread in the corridor and everybody started exulting and congratulating Kirsi. This year only five researchers in the whole Finland received this important grant worth two million euros. Kirsi’s ERC project is the first granted to the Faculty of Agriculture and Forestry of the University of Helsinki.

Kudos to Kirsi from all your research group. We are extremely proud of you!

PICTURES:

Happy faces at the party for the recently funded Assist. Prof. Kirsi Mikkonen’s ERC-CoG Partiface project.

ERC cake designed and prepared by Ida Nikkilä

FreshPack – new business from research ideas

We are excited to start our new research and commercialization project “FreshPack” since the beginning of September 2019. The project aims to identify the market potential and create new business from the research idea developed by the Food Materials Science Research Group. Assist. Prof. Kirsi Mikkonen leads this project and other members of the team are Project Planner Emmi Korjus, Doctoral Student Jaison Sithole, Commercialization Officer Petri Junttila, Prof. Maija Tenkanen, Postdoctoral Researcher Elina Jääskeläinen, and Prof. Johanna Björkroth.

Almost half of the global fruit and vegetable production is lost as food waste. FreshPack fights this problem with a novel active packaging component that maintains the quality, microbial safety, and freshness of plant-based products and therefore improves their shelf-life. We have started the further development of our active component along with testing it as part of the existing distribution chain. The component is bio-based and works well in both open and sealed packages.

In September, Emmi and Petri participated in the Smart Packaging Conference in Hamburg, Germany, which was a great kick-off for the project. The conference brought together other active and intelligent technology developers, brand owners, packaging producers, and processing experts to discuss new opportunities and applications for intelligent and active packaging. Among many good presentations, there were speakers from some companies targeting to solve similar problems as FreshPack. It was fruitful to explore the field and see different approaches and solutions to the same challenge.

Follow us for updates along the way from a great invention towards even greater commercial product!

 

Source of the fruit picture: Uni Material Bank

Writing retreat in Lammi 7.-9.10.2019

Our previous writing and networking retreat in October 2018 was such an excellently productive and positive experience that again in October 2019, the Food Materials Science Research Group, reinforced with Vice Dean of Research, Prof. Maija Tenkanen and her Carbohydrate Enzymology and Chemistry Group, and the Aalto Protein Team, led by Prof. Emma Master, spent three days at the Lammi Biological Station of the University of Helsinki.

The classroom was reserved for quiet working, where we reached an amazing flow experience for writing. Group meetings, face-to-face or via Skype, and many scientific discussions were held outside of the classroom. Fabio introduced us a modern idea about writing together an article in 24 hours, which we experimented. We enjoyed lively conversations, did a hiking trip to the nearby Evo forest area, picked mushrooms, and tasted them as an evening snack. Of course we enjoyed also delicious meals at breakfast, lunch, coffee breaks and dinner. The food was wonderful, and we could focus all our energy in writing. Evening sauna by the Pääjärvi lake was relaxing, and swimming in the fresh cold water kept our minds clear and sharp.

Summer at FoMSci

We are Elli and Kaisa, food technology masters students, and we were happy to spend the summer working as research assistants at Food Material Science research group. During the summer we worked with different polysaccharides and emulsions. Our research was focused on emulsion stability, and we familiarised ourselves with many different analytical techniques, such as Mastersizer, Turbiscan, and spectrophotometer… The microfluidizer in the processing lab was our best friend during the summer.

Working in this research group was very enjoyable and eye-opening experience. We were able to independently develop our own skills as researchers in planning, executing, and evaluating our experiments. The support system of the team was great, and help was always available when needed. It was especially motivating to work in such an ambitious team, whose focus was on real industrial applications. The topics of utilising side streams and novel emulsion stabilisers are very current in the food materials industry, which motivated us even more. It will be interesting to continue working with this research group alongside our studies and further develop our researcher skills.

HEMISURFing in HELsinki

Well Hello Helsinki and Viikki Campus!

August 15ht, 2019 brought upon an exciting opportunity for the first face-to-face meeting within the SNS Nordic Forest Research project HEMISURF (https://nordicforestresearch.org/sns-127/). Thanks to the immaculate hosting by Kirsi and Mamata, the project got a flying start accompanied by many, many plans on Nordic hemicelluloses. There will be more to come from the consortium: Kirsi Mikkonen, Bjørge Westereng and Tiina Nypelö. Next stop: Gothenburg 2020.

Refreshing summer trip in Suomenlinna

The Food Materials Science Research Group and the Carbohydrate Chemistry and Enzymology Group spent a refreshing recreational day at Suomenlinna World Heritage Site in Helsinki. On the way to the Suomenlinna ferry at the Market Square, the groups visited some of the University of Helsinki City Center Campus facilities, such as the beautiful main library and inspirational Think Corner. At Suomenlinna sea fortress, the groups attended a guided tour to learn about the complex and vivid history of the venue. After the exciting tour, we headed for a lovely three-course dinner and drinks at a local bistro. Lively conversations continued about Finnish history and grammar amongst other relaxed subjects.