Creating More Sustainable Cosmetics with Spruce Gum and Birch Gum

The food and the cosmetics industries share some similarities – ingredients are a major one. This research will help both industries by providing them new information about candidate raw materials. Stabilizers, viscosity controlling agents, emulsifiers, to name a few – it’s possible to use the same innovative solutions to provide greener food and cosmetic ingredients. Spruce and birch gum are examples of new promising ingredients that could progress these industries.

A Bachelor of Beauty and Cosmetics (estenomi) student from Laurea University of Applied Sciences, Anne Parkkonen completed her thesis on the use of spruce and birch gum in cosmetics. It was a practical-oriented project and the goal was to plan, formulate and manufacture different kinds of cosmetic products by including spruce or birch gum as an ingredient. The thesis presents the legal regulations related to cosmetics. As previous research is mainly made for food ingredients, using wood gums for cosmetic purposes is a new idea. The thesis provides more detailed information about the legislation behind the use of ingredients/chemicals in cosmetic products.

The emulsion stabilizing features of spruce and birch gums lead Anne’s work to focus on exploring their effect on texture and composition when used in emulsion-based products (e.g. skin creams and serums). Additionally, evidence also indicates these gums have antioxidant, prebiotic, and anti-inflammatory properties. Some very promising findings from these experiments included how spruce and birch gum made a comfortable and pleasant film-like feel and appearance on the skin when the emulsions dried. Spruce and birch gum seemed to have moisture binding properties which are desirable features in many cosmetic products. These findings support the need for further studies on the use of wood gums in cosmetics.

This thesis project was completed under the guidance of Assoc. Prof. Kirsi Mikkonen and Dr. Satu Kirjoranta who study hemicelluloses (spruce and birch gum) and their potential applications. New avenues have been opened from their initial research, expanding into the field of cosmetics, with nine candidate spruce and birch gum-based products created. These products could inspire future research and collaborations with industry in Finland and further abroad to elucidate how to incorporate spruce and birch gum effectively in different applications.

Spruce and birch gum are ingredients from sustainable sources, manufactured using environmentally-friendly technology from wood. This thesis explores just one example of how many small solutions could make the world and its goods more sustainable within a circular economy. There is a need to replace existing ingredients with greener alternatives which are produced locally and from renewable sources. Spruce and birch gum are hopefully an example to support a better future for the cosmetics industry without compromising on product quality. Anne’s thesis will be released later this year. Petri Kilpeläinen from Natural Resources Institute Finland (Luke) is thanked for providing the spruce and birch gum samples for the study.

Unravelling the assembly mechanisms of emulsions: a new collaboration between FoMSci (University of Helsinki), BiCMat-Aalto and BiCMat-UBC groups (Aalto University and University of British Columbia)

We are pleased to announce the launching of a research collaboration between FoMSci (University of Helsinki) and Biobased Colloids and Materials operating both in Aalto University (BiCMat-Aalto) and University of British Columbia, Canada (BiCMat-UBC), led by Prof. Orlando Rojas. This collaboration is boosted by the joining of two postdoctoral researchers, Drs. Mamata Bhattarai and Emilie Ressouche working under the joint supervision of Profs. Rojas and Mikkonen. Mamata finished her PhD from FoMSci in November 2020, and Emilie comes from the Department of Applied Physics, in the Molecular Materials group, led by Prof. Olli Ikkala.

The research topics and the know-how available in both groups are complementary: FoMSci brings expertise in emulsions, hemicelluloses, and food applications.; BiCMat also works with multiphase systems based on lignocellulosic bio-colloids. Together, the groups will investigate the mechanisms responsible for the formation of emulsions stabilized by bio-based compounds such as lignin/hemicellulose complexes, and plant- as well as marine-derived bioresources.

This research project aligns with the goals of the BioElCell Research project, funded by Advanced ERC (2018-2023) in BiCMat, and will also bring an expansion to our Academy of Finland funded ENVISION project, leading to a wider comprehension of emulsions stabilized by wood hemicelluloses.

We nailed it again: four new funded projects to FoMSci

Between November and December 2020 our FoMSci group has received four new grants: three to Fabio Valoppi (iOLEO, ENGEL, and iFOOD), and one to Thao Minh Ho (FinPowder).

Fabio’s projects: The iOLEO and ENGEL projects, funded by the University of Helsinki three-year research grant scheme (7% success rate – only 9 projects were funded among 128 submitted) and the Jane and Aatos Erkko Foundation, respectively. These projects aim to develop new oleogels with body weight managing abilities unlocking the potential of oleogels as multi-functional fat substitutes. Mr. Tiago Pinto has been selected and hired as a new PhD student in the iOLEO project and will begin his work in April 2021. For the other project, ENGEL, we are currently in the process of hiring a postdoctoral researcher. The iFOOD project, funded by HELSUS, aims to develop a new digital tool to simulate mechanical properties of food products using finite element method simulation. This project is based on the existing and fruitful collaboration between FoMSci and the Electronics Research Laboratories (ETLA) also from the University of Helsinki.

Thao’s project: The FinPowder project, funded by the Finnish Natural Resources Research Foundation, aims to design powder particles to protect functional compounds of wild berry during spray drying. These coating materials originate from sustainable and natural sources that are extremely low in calories and cost, namely wood-based celluloses and hemicelluloses. Mr. Abedalghani Halahlah has been selected and hired as our new PhD student to work in the FinPowder project and will join the FoMSci group within a couple of months. Abedalghani will be co-supervised by Associate Professor Kirsi Mikkonen and Dr. Thao Minh Ho, in collaboration with Professor Vieno Piironen.

The cherry on the cake is that thanks to these new projects, our group will now be able to purchase a brand-new lab scale spray dryer!

Even though 2020 has been a tough year, we ended it in the best way possible with new funding, new people joining FoMSci, and new equipment. Writing proposals can be very energy demanding, but the doors that these new projects will open make it worth all the effort we put in during the writing process.

2021 has already started, and new and exciting times are waiting for us ahead!

PARTIFACE: Green route to wood-derived Janus particles for stabilized interfaces

We are extremely thrilled to start our new research project “PARTIFACE” since the beginning of June 2020, supported by the European Research Council and led by Assist. Prof. Kirsi S. Mikkonen. This project aims to develop a green conversion route using enzymatic crosslinking to build a novel concept, in which tailored bi-facial “Janus” particles will be prepared from two of the most abundant, but underexploited wood-based biopolymers: lignin and hemicelluloses.

Using environmentally friendly technology, this project will design sophisticated and sustainable hierarchical architectures from the abovementioned biopolymers. Due to their two ‘faces’ with opposite properties, these tailored wood-based particles are expected to have a superior capacity to stabilize emulsion interfaces.

Therefore, we envision a breakthrough in interface and colloid science, contributing to more sustainable use of the Earth’s resources.

Okay, this is remote work!

COVID-19 forced the FoMSci research group to work remotely.  We rapidly took use of versatile online tools and Kirsi started to host weekly group meetings. Staying home made us realize how important human interactions are in working life, and hence we also opened remote coffee breaks. A video call over a cup of morning coffee makes things seem more normal again. 

While we do not have access to laboratories, otherwise moving to remote working was an easy step. It also proves to be an incredibly efficient way to advance writing publications or planning new project proposals. FoMSci has been very productive already! 

Yet, we cannot deny how much we miss working in the laboratories and the hands on work.  

During regular working days, one can easily reach a daily goal of 10K steps of walking. In remote working, UniSport video exercises help us keep in shape, and many of us has given a try to various workouts. A daily routine of stretching and getting fresh air is good for the mood!

FoMSci thanks the University of Helsinki for an excellent job during the corona crisis. The university offers to co-operate with hospitals and help authorities with their facilities and laboratory equipment. The administration and IT helpdesk are working brilliantly by clear communication and instructions, which has made these exceptional times and the digital leap much easier for teachers and researchers. We are working together for a better future. #WeAreHelsinkiuni

ENVISION: Oil-water interface characterization

Ever wonder why your salad dressing can be so smooth, even though it is basically made of oil and vinegar? Vinaigrette, like mayonnaise, milk, and ice cream, are examples of what we call emulsions. Commonly used in the pharmaceutical, cosmetics, biotechnology and food industries, emulsions let us enjoy liquid products that feel good to our senses, while at the same time they protect bioactive compounds contained inside the mixture. They are formed by mixing two liquids that do not spontaneously mix (typically oil and water) and stabilized by a surfactant. The behaviour and properties of the surfactant on the border between oil and water determine the stability of emulsions, but the relationship between how the surfactants arrange themselves on the oil droplets and how they stabilize the mixture is still unknown. Our project, called “ENVISION”, is ongoing to provide insights about interfacial properties of emulsions. This project is funded by The Academy of Finland (1.9.2019–31.8.2023), led by Assistant Professor Kirsi Mikkonen, and conducted by Postdoctoral Researcher Thao Minh Ho and Doctoral Student Felix Abik.

In this project, we will be using a technique called atomic force microscopy (AFM). Imagine entering a dark room; your first instinct would be to look for the light switch on the wall by touching it with your hand, feeling the surface until you found the switch. With AFM, we are doing the same thing, but with a much smaller ‘hand’ to ‘touch’ the surface of our emulsions and make an image of what is happening on the droplets. We have successfully investigated trials on the preparation of emulsions with different surfactants. Next steps will be the characterization of the stability of emulsions. This will be followed by development of an innovative method for interfacial characterization using AFM. The result of this project will potentially open new scenarios in manipulating and designing intelligent delivery systems in forms of emulsions, for many bioactive compounds in numerous applications in technology and life sciences.

Photo: Felix and his doctoral thesis committee (who met for the first time just before the COVID-19 outbreak spread in Finland). From left to right: Postdoctoral Researcher Thao Minh Ho, University Researcher Laura Flander, Professor Orlando Rojas (Aalto University), Assistant Professor Kirsi Mikkonen (PI), University Lecturer Marianna Kemell, and Doctoral Student Felix Abik.

Have FUN with OLEOgels! New HiPOC grant for turning oleogels into functional materials

In December 2019, Fabio Valoppi obtained the Proof of Concept grant (HiPOC) from the Helsinki Institute of Life Science (HiLIFE) of the University of Helsinki for his project entitled “Functional oleogels with health enhancing ability (FUN-OLEO)”. Within this project, Fabio and his collaborators are transforming oleogels into novel functional materials using an unusual route.

Oleogels are considered the “fat of the future” and were developed to replace saturated, hydrogenated and trans fats in food products. They contain high fractions of liquid oil (85 – 99.5%) entrapped in a network made of structuring molecules. However, oleogels have some drawbacks that slow down their application in certain type of foods. Fabio came up with a novel concept that could extend oleogels’ applicability to a broader range of food products while introducing a new health enhancing ability: this is how you kill two pigeons with one stone!

The purpose of this HiPOC grant is to accelerate the patenting of Fabio’s novel idea. Unfortunately, we cannot reveal too much about the idea behind the project at this time. We can only say that we already obtained encouraging results! Stay tuned for more updates and to find out how this project will evolve.

Doing GOOD

As highlighted in our previous blog post, food and pharmaceutical industries could utilize birch- and spruce-derived hemicelluloses and lignin in future. In addition to their promising emulsion stabilizing properties, the fiber- and polyphenol-rich birch and spruce extracts could be good for our gut health. Therefore, the effects of wood-derived extracts on gut health are the focus of the GOOD project. This project has recently received funding from the Jane and Aatos Erkko Foundation. Doctoral student Emma Kynkäänniemi, postdoctoral researcher Maarit Lahtinen, university lecturer Anne-Maria Pajari and assistant professor Kirsi Mikkonen form a good project team!

A group of rats got an exciting addition to their diets: polyphenol-rich birch extract. The diet was tasty and all the rats gained weight normally. Next, we will investigate the effects of the feeding period on gut health, analyzing, for example, the gut microbiota and their metabolites from the fecal samples of the rats. The results of the GOOD project will bring us many steps closer to the goal of transforming wood into food.

Who wants to be (ERC) millionaire?

The FoMSci group leader, Kirsi Mikkonen, received the prestigious and extremely competitive European Research Council Consolidator Grant (ERC-CoG) for her innovative and challenging project entitled: “Green Route to Wood-Derived Janus Particles for Stabilized Interfaces – PARTIFACE”. The project is about developing a novel type of Janus particles, that are bi-facial particles where the two “faces” of the particle have opposite properties. Imagine an apple, half red and sweet and half green and sour, that is a Janus apple! Kirsi will develop these new particles using renewable resources. Kirsi’s Janus particles will be able to stabilize emulsions from a physical and chemical perspective, meaning that the emulsions will look and smell the same even after months of storage.

The splendid news came in a very cryptic email from the Council. “I got the ERC grant” Kirsi said staring amazed at her phone. The rumor spread in the corridor and everybody started exulting and congratulating Kirsi. This year only five researchers in the whole Finland received this important grant worth two million euros. Kirsi’s ERC project is the first granted to the Faculty of Agriculture and Forestry of the University of Helsinki.

Kudos to Kirsi from all your research group. We are extremely proud of you!

PICTURES:

Happy faces at the party for the recently funded Assist. Prof. Kirsi Mikkonen’s ERC-CoG Partiface project.

ERC cake designed and prepared by Ida Nikkilä

Writing retreat in Lammi 7.-9.10.2019

Our previous writing and networking retreat in October 2018 was such an excellently productive and positive experience that again in October 2019, the Food Materials Science Research Group, reinforced with Vice Dean of Research, Prof. Maija Tenkanen and her Carbohydrate Enzymology and Chemistry Group, and the Aalto Protein Team, led by Prof. Emma Master, spent three days at the Lammi Biological Station of the University of Helsinki.

The classroom was reserved for quiet working, where we reached an amazing flow experience for writing. Group meetings, face-to-face or via Skype, and many scientific discussions were held outside of the classroom. Fabio introduced us a modern idea about writing together an article in 24 hours, which we experimented. We enjoyed lively conversations, did a hiking trip to the nearby Evo forest area, picked mushrooms, and tasted them as an evening snack. Of course we enjoyed also delicious meals at breakfast, lunch, coffee breaks and dinner. The food was wonderful, and we could focus all our energy in writing. Evening sauna by the Pääjärvi lake was relaxing, and swimming in the fresh cold water kept our minds clear and sharp.