Tilannekuva Savijoelta – vedenlaatu 405 päivää kipsin levityksen jälkeen

Petri Ekholm
Erikoistutkija Suomen ympäristökeskus

Säät ovat suosineet hankettamme. Viime vuoden kuiva syksy sopi kipsin levitykselle, ja tämän syksyn märkyys taas on asettanut kipsin koetukselle. Juuri tällaisia ankaria testejä tarvitsemme voidaksemme arvioida kipsin tehoa. Miltä siis näyttää lupauksemme kirkkaammasta Savijoesta ja vähentyneestä fosforikuormituksesta 405 päivää ja 232 valumavesimillimetriä kipsin levityksen jälkeen?

Blogieni lukijat muistavat, että fosforia kulkeutuu pelloilta vesiin kahdessa muodossa: maa-ainekseen sitoutuneena ja veteen liuenneena. Näiden fosforimuotojen rehevöittävyys ja huuhtoutumismekanismit poikkeavat toisistaan. Niinpä jotkut ympäristötoimet voivat purra maa-ainesfosforin huuhtoutumiseen, mutta jopa lisätä liuenneen fosforin huuhtoutumista. Tätä emme tahdo, ja aiempiin tutkimuksiin perustuva oletuksemme onkin, että kipsi vähentää kummankin fosforimuodon huuhtoutumista Savijoen valuma-alueella

Smoke-elokuvassa Auggie-kauppias otti joka päivä valokuvan liikkeensä edustan kaupunkimaisemasta. Jos tämä Harvey Keitelin esittämä hahmo olisi pitänyt kauppaansa Savijoen rannalla, saisimme kuivina kausina katsoa kuvia, jotka näyttäisivät pitkästyttävän samanlaisilta. Tulva-aikoina taas päivittäinenkään ”kuvanotto” ei riittäisi ilmentämään veden ja sen kuljettaman fosforin vaihtelua.

SAVE-hankkeen anturit rekisteröivät Savijoen veden laatua kerran tunnissa. Näin saamme tarkan käsityksen veden sameudesta ja sitä kautta maa-ainesfosforin pitoisuudesta. Ihan joka tunti dataa ei kuitenkaan kerry, sillä antureissa on aika ajoin häiriöitä: ne ovat hautautuneet joen pohjamutaan, niiden optiset sensorit ovat tukkiutuneet roskista ja välillä ne on ollut pakko nostaa ylös huoltoa varten. Katkostilanteet hoidan laskennallisesti; kokonaiskuva joesta kestänee pienen editoinnin.

Savijoki rauhoittumassa joulun viettoon. Mittapato joulukuussa 2017. Kuva: Jarkko Ylijoki

Tunnittaisesta aineistosta lasken kullekin havaintopaikalle maa-ainesfosforin kulkeuman kertomalla pitoisuuden valunnalla­­ – tai siis laittamalla SAS-nimisen ohjelmiston duuniin. Ohjelmistolta laskenta ja laatukonversiot hoituvat muutamassa sekunnissa, minulta siinä menisi hermot. Tulokseksi saan tiedon, kuinka paljon maa-ainesfosforia on kulkeutunut kipsittömällä vertailualueella Savijoen mittapadolla, pilottialueen keskellä Yliskulmassa ja alajuoksulla Parmaharjulla. Tulkitessani tuloksia oletan toistaiseksi, että kaikki maa-ainesfosfori tulee pelloilta, mikä ei toki pidä paikkaansa, mutta kohtelee kipsikäsiteltyjä ja kipsittömiä peltoja tasapuolisesti. Aineiston kertyessä myös laskentamenetelmää tullaan kehittämään niin, että erilaisia valuma-aluetekijöitä ja epävarmuuksia otetaan huomioon tilastotieteen keinoin.

Ajalta ennen kipsin levitystä aineistoa on 164 päivältä, helmikuun puolivälistä heinäkuun 2016 loppuun. Vettä tuona jaksona valui 112 mm ja Savijoen yläjuoksun vertailualueella huuhtoutui 0,34 kiloa maa-ainesfosforia peltohehtaaria kohden. Yliskulmassa vastaava arvo oli 0,46 kg/ha, mikä tarkoittaa, että pilottialueen yläosassa, mittapadon ja Yliskulman välisellä alueella, pellot ovat olleet kuormittavampia kuin vertailualueella. Pilottialueen yläosassa peltohehtaarilta on huuhtoutunut 0,53 kg fosforia ja pilottialueen alaosassa, Yliskulmalta Parmaharjulle, lähes saman verran 0,48 kg/ha. Miten tilanne muuttui kipsin levityksen myötä?

Kipsin levityksen jälkeistä aineistoa on toistaiseksi käsitelty 405 päivän ajalta ja 232 valuntamillimetrin osalta, marraskuun 2016 alusta joulukuun kymmenenteen päivään 2017. Tämän jakson aikana vertailualueen pelloilta kulkeutui 1,7 kg/ha maa-ainesfosforia, mutta kipsinlevitysalueen keskiosassa vain 1,4 kg/ha ja alaosassa 1,3 kg/ha. Jotakin on siis tapahtunut. Jotta näistä luvuista päädyttäisiin kipsin todelliseen tehoon, meidän on otettava huomioon kipsikäsiteltyjen peltojen määrä. Nimestään huolimatta kipsinlevitysalueen yläosassa ”vain” 47 % pelloista sai kipsikäsittelyn, alaosassa 54 %. Kun tämä otetaan huomioon, kipsikäsitellyiltä pelloilta on huuhtoutunut 42 % vähemmän maa-ainesfosforia kuin kipsittömiltä pelloilta. Tällaiseen lukuun päästään Yliskulman mittausten perusteella. Parmaharjun mukaan vähennysprosentti on korkeampi: 50. Kipsin teho on vieläkin suurempi, jos laskennassa otetaan huomioon se, että kipsinlevitysalueen pellot vaikuttivat olevan luontaisesti kuormittavampia kuin vertailualueella.

Entäpä liuennut fosfori? Siitä meillä on huomattavasti harvempi aineisto, vaikka Lounais-Suomen vesiensuojeluyhdistys on tuottanut meille lisäaineistoa. Koska liuenneen fosforin arviointi perustuu käsinäytteenottoon ja laboratoriomäärityksiin, ”valokuvia” eli näytteitä on otettu yli kahden viikon välein. Pitoisuudet ovat Parmaharjulla olleet noin 10 % pienempiä kuin mittapadolla, joten kipsikäsitellyiltä pelloilta näyttää huuhtoutuneen noin viidenneksen vähemmän liuennutta fosforia kuin kipsittömiltä pelloilta. Koska liuenneen fosforin pitoisuudet eivät vaihtele niin voimakkaasti kuin maa-ainesfosforin, tilannetta ei tarvitse joka päivä saati sitten joka tunti seurata. Tarkempi arvio vaatisi kuitenkin vielä muutaman näytteen täyden tulvatilanteen ajalta.

Maa-ainesfosforin osalta tiedämme, että kipsi on tepsinyt: Savijoki on tullut kirkkaammaksi. Muutosta voi ehkä olla vaikea uskoa. Syksyllä joessa on näkynyt, erästä viljelijää lainatakseni, kaikkea polkupyörää pienempää. Vaikka ihmissilmä ei eroa havaitsisikaan, Luoteen antureilla mitattuna sameusero on selvä. Toki myös maa-ainesfosforin vähentymäprosentti tarkentuu aineiston täydentyessä ja tulkintamenetelmien parantuessa, mutta enemmän alamme nyt jännittää sitä, kuinka pitkään kipsi vielä tehoaa. Laskelmieni mukaan noin 85 % kipsistä on vielä maassa, joten oletan anturien jatkossakin rekisteröivän Yliskulmalla ja Parmaharjulla pienempiä sameuksia kuin mittapadolla. Ennen kipsin levitystä tilannehan oli toisinpäin.

Vähentääkö kipsi liuennutta, kaikkein rehevöittävintä fosforia?

Petri Ekholm
Erikoistutkija
Suomen ympäristökeskus

Valumavesissä on kahdenlaista fosforia: maa-ainekseen sitoutunutta fosforia ja liuennutta fosforia. Maa-ainekseen sitoutuneen fosforin määrää voi päätellä veden ulkonäöstä: mitä sameampaa vesi on, sitä enemmän siinä on maa-ainesta ja siihen sitoutunutta fosforia. Kipsin levityksen jälkeen valumavedet kirkastuivat silmin nähden. Kirkastumisen vahvistivat Savijoen jatkuvatoimiset anturit, jotka mittaavat veden sameutta tieteellisen tarkasti, hiukkasten aiheuttaman valon sironnan perusteella. Sameuden vähenemisestä voidaan päätellä, että kipsattujen peltojen eroosio väheni. Toisin sanoen maahiukkaset ja niihin sitoutunut fosfori eivät siis lähteneet aiemmassa määrin liikkeelle vaan jäivät peltoon.

Liuennut fosfori sen sijaan on niin silmille kuin antureillekin näkymätöntä: veden optisista ominaisuuksista ei voi päätellä, onko liuennutta fosforia vähän vai paljon. Pitoisuuden saa selville vain ottamalla vesinäytteen ja viemällä sen laboratorioon määritettäväksi. Siellä näyte suodatetaan hyvin tiuhan suodattimen läpi. Suodoksesta saadaan fosforin pitoisuus selville, kun fosfori värjätään siniseksi yhdisteeksi, jonka intensiteetti on suoraan verrannollinen pitoisuuteen.

Liukoisen fosforin vaikutukset vesistöissä on helppo havaita. Kuva: Pirjo Ferin

Vaikka liuennut fosfori ei silmille näy, näkyvät sen vaikutukset sitäkin selvemmin. Se on nimittäin levien herkkua. Niin sanottu liuennut ortofosfaatti on ainoa fosforin muoto, joka pystyy kulkeutumaan niin viljelyskasvien kuin levienkin solunseinän läpi. Se on siis ainoa suoraan kasveille käyttökelpoinen fosforiyhdiste. Jotta maa-ainekseen sitoutunut fosfori olisi käyttökelpoista, sen on ensin vapauduttava ortofosfaatiksi. Vuosikymmenten tutkimuksesta huolimatta on edelleen epäselvää, missä määrin ja millaisissa oloissa maa-ainesfosfori muuntuu käyttökelpoiseksi. Se kuitenkin tiedetään, että osa fosforista ei koskaan vapaudu vaan hautautuu hiukkasten mukana vesien pohjalle.

Maatalouden vesiensuojelumenetelmien olisi hyvä vähentää sekä maa-ainesfosforin että liuenneen fosforin kulkeutumista pelloilta vesiin. Valitettavasti näin ei aina ole. Esimerkiksi peltojen talviaikainen kasvipeite voi vähentää tehokkaasti eroosiota ja maa-ainesfosforin kulkeutumista, mutta saattaa lisätä liuenneen fosforin huuhtoutumista fosforin kertyessä pintamaakerrokseen, jossa se voimakkaimmin valumavesien huuhdottavana.

Kipsin etu on se, että se tehoaa kumpaankin fosforimuotoon. Näin tapahtui ainakin Nummenpään kipsikokeessa, jossa käsiteltiin 100 hehtaaria peltoa kipsillä Vantaanjoen valuma-alueella. Siellä maa-ainesfosforin kulkeuma väheni 60 prosenttia ja liuenneen fosforin huuhtouma 30 prosenttia. Mutta miten käy Savijoella? Tähän kysymykseen ei vielä voida vastata.

Lounais-Suomen poikkeuksellisen kuivien kelien johdosta SAVE-hankkeelle on kertynyt liian vähän edustavia vesinäytteitä, joiden perusteella liuenneen fosforin muutoksia voi arvioida. Siinä missä kipsinlevitysalueen alajuoksulta, Parmanharjulta, on kipsikäsittelyn jälkeen kertynyt yli 5000 sameushavaintoa, vesinäytteitä ja liuenneen fosforin määrityksiä on vain 12. Aineistossa oleva hajonta, ”kohina”, peittää vielä alleen mahdollisen kipsisignaalin. Tästä keväästä lähtien näytteenottoa on tihennetty, kun lisänäytteitä ottaa ja määrittää Lounais-Suomen vesiensuojeluyhdistys. Koska kesästä tulee kuiva ja lämmin, joutunemme odottamaan tietoa kipsin vaikutuksesta liuenneeseen fosforiin syksyyn asti.

Kipsiä vai rakennekalkkia?

Eliisa Punttila, Projektikoordinaattori
Eliisa Punttila,
Helsingin yliopisto

Meiltä kysytään usein: miksi kipsi, miksei rakennekalkki? Mitä eroa niillä on? Milloin pitäisi käyttää kipsiä ja milloin rakennekalkkia? Nämä kysymykset ovat tärkeitä myös hankkeellemme. Vaikka tutkimuksissa keskitymmekin vain kipsiin, ajatuksena on oppia lisää myös rakennekalkista ja siitä, voisiko se olla kipsiin rinnastettava vesiensuojelukeino.

Kipsiä vai kalkkia?
Kuva-arvoitus: Kummassa kasassa on kipsiä, kummassa rakennekalkkia?

Opintoretki rakennekalkin pariin

Ruotsissa rakennekalkin käyttö tunnetaan paremmin, joten lähdimme viime syksynä etsimään tietoa sieltä. Matkustimme lokakuussa Ruotsin Södertäljeen tutustumaan Nordkalkin, Nefcon ja Tukholman veden yhteiseen Project Born -hankkeeseen. Hankkeen tavoitteena on tutkia rakennekalkin ja kalkkisuodinojien käyttöä savimailla fosforihuuhtoumien vähentämiseksi. Retkellä tutustuimme hankkeen perustamaan infopisteeseen ja kuulimme ruotsissa tehdyistä rakennekalkkikokeista. Alla muutama valokuva retkeltämme.

Vierailimme hankkeen perustamalla infopisteellä, jossa sai tietoa rakennekalkista ja sen käytöstä. Kuva: Eliisa Punttila
Infopisteellä pääsi kokeilemaan eri rakennekalkkimäärillä käsiteltyjen savimaiden muokattavuutta. Kuva: Eliisa Punttila
SLU:n Kerstin Berglund ja NordKalkin Lars Wadmark perehdyttivät meidät rakennekalkin saloihin. Kuva: Eliisa Punttila

Opintoretki antoi alkusysäyksen rakennekalkkia koskevien tutkimusten lukemiselle, ja ymmärryksemme aiheesta on lisääntynyt entisestään. Tutkimus ei rajoitu vain Ruotsiin, vaan myös Suomessa on tehty joitakin laboratorio- ja kenttäkokeita. Viimeisimpiä kenttäkokeita on tehnyt esimerkiksi hiljattain päättynyt LOHKO-hanke. Seuraavaksi avaan tarkemmin, mitä rakennekalkilla tarkoitetaan, millainen on sen vaikutusmekanismi, sekä mitä tiedetään sen vedenlaatuvaikutuksista.

Mitä rakennekalkki on ja miten se toimii?

Rakennekalkki määritellään siten, että siinä on reaktiivisena ainesosana joko poltettua kalkkia (kalsiumoksidia, CaO) tai sammutettua kalkkia (kalsiumhydroksidia, Ca(OH)2) sekä kalsiumkarbonaattia (CaCO3). Markkinoilla on erilaisia rakennekalkkituotteita, joissa näitä ainesosia voi olla erilaisissa suhteissa.

Rakennekalkituksen yhtenä tavoitteena on nostaa peltomaan pH:ta, minkä toteuttavat rakennekalkista irtoavat hydroksidi- ja karbonaatti-ionit. Toisena tavoitteena on mururakenteen parantaminen. Kun rakennekalkin reaktiivisesta ainesosasta irtoava kalsium liittää savihiukkasia toisiinsa, muodostuu suurempia savipartikkeleita. Reaktiivinen ainesosa aiheuttaa maassa muitakin reaktioita, jotka muodostavat pysyviä mururakenteita.

Edellytys reaktioiden syntymiselle ja rakennekalkituksen onnistumiselle on levityksen ja multauksen nopea toteutus, ettei reaktiivinen osa ehdi reagoida ilman hiilidioksidin kanssa. Silloin lopputuloksena olisi tavallista kalkkia. Käsittelyn onnistuminen edellyttää myös, että peltomaa on riittävän kuiva ja lämmin (yli 4 astetta). Multaus on suositeltu tehtäväksi kultivaattorilla tai lautasmuokkaimella kahdesti risteäviin suuntiin, jotta rakennekalkki sekoittuu hyvin. Riippuen käytettävästä rakennekalkista, levitys tapahtuu joko kuivan tai kostean kalkin levitysvaunulla.

Rakennekalkin käyttömäärälle ei ole olemassa yhtä suositusta, vaan se vaihtelee käsiteltävän kohteen savespitoisuuden ja pH:n mukaan, sekä ilmeisesti myös sen mukaan, missä suhteessa rakennekalkki sisältää eri ainesosia. Hehtaarille levitettävä määrä voi olla esimerkiksi 5 tai 15 tonnia.

Vedenlaatuvaikutuksista ei selviä lukuja

Rakennekalkin uskotaan olevan tehokas keino vähentämään fosforihuuhtoumaa. Perusteluna on muun muassa se, että rakennekalkin aikaansaama maan mururakenteen paraneminen edistää maan vedenläpäisykykyä, parantaa kasvien juuristoa sekä vähentää pintavaluntaa ja edelleen eroosiota. Toisaalta joissakin tilanteissa maan pH:n muutos muuttaa myös fosforin sitoutumista, mikä ainakin teoriassa voi vähentää fosforihuuhtoumaa.

Tällä hetkellä käsityksemme on, että rakennekalkin fosforikuormitusta vähentävistä vaikutuksista on saatu tutkimuksissa viitteitä, mutta julkaistuja tutkimustuloksia on vielä vähän. Yleisesti voidaan todeta, että rakennekalkituksella on havaittu olevan kiintoaineeseen sitoutuneen fosforin huuhtoumaa vähentävä vaikutus, mutta fosforikuormituksen vähenemisen suuruusluokasta tai rakennekalkin käyttömäärästä vesistövaikutusten aikaansaamiseksi ei toistaiseksi ole selviä vastauksia. Liukoisen fosforin tai muiden aineiden huuhtoumia on harvoin mitattu tai kokeista on saatu ristiriitaisia tuloksia.

Toistaiseksi rakennekalkin vedenlaatuvaikutuksia on selvitetty laboratorio- ja kenttäkokeilla, mutta ei vastaavin valuma-aluetasoisin tutkimushankkein, kuten kipsille on tehty. Vaikutuksia on seurattu suhteellisen lyhyen ajan. Kokeista saatuja tuloksia on vaikea verrata keskenään, koska niissä on käytetty erilaisia koeasetelmia. Tehtyjen kenttäkokeiden ongelmana on, ettei taustamuuttujien vaikutusta tuloksiin ole aina riittävästi huomioitu (mm. levitysolosuhteiden vaikutus, peltomaan ominaisuudet). Yleisenä haasteena on myös se, ettei rakennekalkin koostumukselle ole olemassa tarkkaa määritelmää, eikä sisältöä tai alkuperää ole aina ilmoitettu kokeen yhteydessä.

Lisätutkimusta tarvitaan

Jotta rakennekalkkia voitaisiin käyttää nimenomaan vesiensuojelumenetelmänä, tarvittaisiin lisää tietoa sen vaikutuksista vedenlaatuun pitkällä aikavälillä sekä eri koostumuksilla, käyttömäärillä ja erityyppisillä peltomailla. Toisaalta tarvittaisiin lisätietoa myös rakennekalkin käytettävyydestä ja kustannuksista. Näin voitaisiin arvioida esimerkiksi optimaalista käyttöä haluttujen vedenlaatuvaikutusten aikaansaamiseksi sekä mahdollisten sivuvaikutusten selvittämiseksi.

On siis toistaiseksi vielä vaikea antaa vastausta kysymykseen, ovatko rakennekalkki ja kipsi toisiinsa rinnastettavia vesiensuojelukeinoja. Kipsin vaikutuksista on olemassa vahvaa näyttöä ja tietomäärä kasvaa jatkuvasti hankkeen edetessä. Rakennekalkin vesiensuojelukäyttöön ja vedenlaatuvaikutuksiin liittyy vielä selvitettäviä kysymyksiä. Toisaalta rakennekalkilla ja kipsillä on myös muita käyttökohteita kuin vesiensuojelu. Se mihin pyritään, ratkaisee, tulisiko valita kipsi vai rakennekalkki. Rakennekalkki tulee kyseeseen esimerkiksi silloin, kun tavoitteena on nostaa pellon pH:ta.

Vastaus arvoitukseen: vasemmanpuoleisessa kuvassa on rakennekalkkia (kuva: Nordkalk), oikeanpuoleisessa kipsiä (kuva: Pasi Valkama).

Kevätkatsaus vedenlaatuun

SAVE-hankkeen asiantuntija, SYKEn erikoistutkija Petri Ekholm vastaa kirjoituksessa kysymyksiin vedenlaadun kehityksestä Savijoella.

Syksy oli erittäin kuiva. Minkälaisia kevät ja mennyt talvi ovat olleet kelien ja lumitilanteen puolesta?

Keli on jatkunut melko kuivana. Talvella lunta oli hyvin vähän pilottialueella. Kevään myötä on tullut vesisateita, mutta ne eivät ole olleet runsaita.

Miten kelit ovat näkyneet Savijoessa virtaavan veden määrässä verrattuna syksyyn ja aiempiin vuosiin?

Kun verrataan Savijoessa virranneen veden määrää, niin virtaamalukemat ovat olleet toistaiseksi pienempiä kuin viime keväänä. Vuosi 2016 oli poikkeuksellisen kuiva, ja kelit ovat siis jatkuneet kuivina myös tämän vuoden puolella. Tämän kevään virtaamia voidaan pitää korkeintaan kohtuullisina.

Vaikka Savijoessa on keväällä virrannut vettä paikoin runsaasti, on kevät ollut kokonaisuudessaan kuiva ja virtaamat aiempaa alhaisemmat. Kuva: Janne Artell / NutriTrade

Ja entäpä sitten se kaikkein tärkein eli vedenlaatu: minkälaisia tuloksia mittauspaikoilta on saatu?

Erittäin rohkaisevia ja toisaalta odotetun kaltaisia. Parhaiten tietoa on maa-ainekseen sitoutuneen fosforin määrästä. Kipsinlevityksen jälkeisenä aikana marraskuun alusta maaliskuun puoliväliin asti ulottuvalla tarkastelujaksolla mittaustulokset noudattavat toivottua järjestystä: suurimmat fosforimäärät on havaittu vertailuvaluma-alueen mittapisteellä yläjuoksulla, keskiasemalla määrä on jo laskenut ja selvästi pienimmät maa-ainekseen sitoutuneen fosforin määrät on havaittu ala-asemalla eli kipsinlevitysalueen alareunalla. Toisaalta kipsin käytöstä indikoivat sulfaattiluvut noudattavat käänteistä järjestystä, mikä on erittäin loogista.

Ala-aseman eli Parmanharjun mittauspisteen läpi on tarkastelujakson aikana kulkenut 26 % prosenttia vähemmän maa-ainesfosforia kuin yläaseman läpi vesimäärään ja valuma-alueen kokoon suhteutettuna. Ala-aseman valuma-alueella sijaitsevista pelloista kuitenkin 57 prosenttia on sellaisia, joille kipsiä ei levitetty viime syksynä. Tämä tarkoittaa sitä, että kipsikäsitellyiltä pelloilta valuvan partikkelifosforin määrä on vähentynyt jopa 60 prosenttia!

Miten tulokset näkyvät käytännössä?

Käytännössä kipsikäsittelyn vaikutuksen voi parhaiten havaita yksittäisissä peltolammikoissa. Savijoessa vaikutusta on vaikea nähdä. Tämä johtuu osittain juuri siitä syystä, että kipsikäsittelemättömien peltojen osuus alueella on niin suuri.

Joillain peltolohkoilla lammikot ovat olleet kristallinkirkkaita. Kuva: SAVE-hanke.

Voiko tuloksista tehdä johtopäätöksiä kipsikäsittelyn tehokkuuden suhteen?

Sen voi sanoa, että jos tulokset jatkavat samalla mallilla, niin päästään todella lähelle samoja tuloksia kuin aiemmassa kipsikäsittelyn tutkimushankkeessa Nummenpäässä. Liuenneesta fosforista on kuitenkin vielä niin vähän havaintoja, että muutoksen suuruutta sen määrissä on toistaiseksi vaikea arvioida.

Onko vedenlaadun mittaamisessa koettu vastoinkäymisiä?

Parmanharjun mittalaitteisto koki kovia maaliskuun puolivälissä. Savijoen kasvaneet vesimäärät saivat soraa ja muuta materiaalia joen pohjalla liikkeelle ja nämä onnistuivat peittämään laitteiston. Tilanne korjattiin nopeasti, mutta muutaman vuorokauden mittaustulokset tuolta asemalta joudutaan julistamaan kelvottomiksi eli ne niin sanotusti liputetaan. Tällä ei kuitenkaan ole hankkeen kannalta merkitystä. Kun dataa on tulevaisuudessa tarpeeksi, ala-aseman luvut interpoloidaan keskiaseman lukujen avulla noille muutamalle päivälle. Tämä oli ensimmäinen tämän kaltainen tapaturma ja suurin yksittäinen vastoinkäyminen – aiemmat liputukset ovat johtuneet mittareihin ajautuneista roskista ja ovat olleet lyhytaikaisempia. Mutta kuten sanottu, tällä ei ole merkitystä hankkeen onnistumisen kannalta.

Savijoki ja Parmanharjun mittauspiste kuvattuna lintuperspektiivistä. Kuva: Janne Artell / NutriTrade

Mitä vedenlaadun seurannassa on lupa odottaa seuraavaksi?

Vedenlaadun seurannassa eletään jälleen todella jännittäviä aikoja. Jos kelit toisivat sateita vielä ennen kylvöä, niin Savijoesta saataisiin erittäin mielenkiintoisia mittaustuloksia. Keväällä myös tihennetään käsin tehtävää näytteenottoa, jonka avulla vaikutuksia liuenneessa fosforissa tarkastellaan. Uudet näytteet helpottavat tarkastelua merkittävästi!

Lisäksi Savijoen alajuoksulle, pilottialueen ulkopuolelle, on perustettu uusi mittauspiste vuollejokisimpukoiden hyvinvoinnin tarkastelua varten. Lähiaikoina myös tuolta pisteeltä saadaan dataa arvioitavaksi. Tämä on todella mielenkiintoista paitsi vuollejokisimpukoiden kannalta niin myös kipsivaikutuksen tarkastelussa. Tässä saadaan tietoa siitä, mitä tapahtuu jokivedelle, kun siihen taas sekoittuu valumavesiä alajuoksun kipsikäsittelemättömiltä alueilta.

Myös virtaamamittauksia jatketaan keväällä ja nämä osaltaan täsmentävät vedenlaatuarvioita, kun joessa virtaavasta veden määrästä saadaan tarkempaa tietoa.

Onko vedenlaadusta vielä muita huomioita?

Kyllä, tärkeä sellainen: ero kipsialueen ja vertailualueen vedenlaadun välillä on ollut suurimmillaan juuri silloin kuin sen on toivottukin olevan eli silloin kuin virtaama on suurimmillaan. Tämä on erittäin hyvä merkki!

Savijokea seurataan 24/7 – miltä näyttää?

Petri Ekholm, Erikoistutkija, Suomen ympäristökeskus

SAVE-hanke seuraa Savijoen vedenlaatua ja -määrää kolmella havaintopaikalla. Savijoen yläjuoksun vertailualueelta, jossa kipsiä ei käytetä, on otettu vesinäytteitä jo 1960-luvulta lähtien. Kipsinlevitysalueella sijaitsevien Yliskulman ja Parmanharjun asemat ovat SAVE-hankkeen varta vasta perustamia. Luode Consultingilta vuokratut automaattiset anturit ovat mitanneet kaikilla kolmella asemalla vedenlaatua kerran tunnissa aina tämän vuoden helmikuusta lähtien. Aineisto varastoidaan dataloggeriin ja siirretään verkkoon, josta veden pinnankorkeus sekä sameus, sähkönjohtavuus, lämpötila ja liuenneen orgaanisen hiilen pitoisuus on nähtävissä lähes välittömästi.

Mittapato talvella
Vertailualueen mittausasema talvella. Kuva: Mikko Kiirikki

Nyt seuraa tiivis opetustuokio vedenlaadun indikaattoreista. Sameus kuvaa valon sirontaa veden hiukkasista. Silmin havaittavan sameuden lisäksi se kuvaa veden kiintoaineen ja siihen sitoutuneen fosforin määrää. Kun sameusarvo on esimerkiksi 1000 FTU:a, niin vedessä on kiintoainetta noin 1 gramma litrassa ja kiintoaineeseen sitoutunutta fosforia 1,4 milligrammaa litrassa. Tällöin vesi on käytännössä läpinäkymätöntä. Sameuden yksikkö, FTU, viittaa sameaan yhdisteeseen, formatsiiniin, jonka avulla mittarit kalibroidaan (FTU = Formazin Turbidity Unit). Sähkönjohtavuus taas kertoo veteen liuenneiden ionien, ”suolojen”, määrän. Sen perusteella arvioidaan sulfaattipitoisuutta ja sitä kautta kipsin vähittäistä huuhtoutumista pelloilta. Lämpötila antaa viitteitä siitä, onko Savijoessa virtaava vesi pintavaluntavettä vai pohjavettä. Liuennut orgaaninen hiili kuvaa veden humusaineiden pitoisuutta. Anturit mittaavat myös Savijoen pinnankorkeuden, jonka perusteella määritetään veden valunta. SAVE-hankkeessa vedenlaatua tutkitaan suhteessa valuntaan, sillä pelloilta tuleva kuormitus riippuu ratkaisevasti valunnasta.

Eli: sameus, sähkönjohtavuus, lämpötila, orgaaninen hiili ja pinnankorkeus. Pysyitkö mukana? Hyvä!

Anturit tuottavat hyvin luotettavia tuloksia: ne on kalibroitu laboratoriossa erittäin tarkasti, ja maastossa mittareiden puhtauden takaa sensoreiden järeä harjaspuhdistus, joka poistaa optisilta pinnoilta roskat ja vedessä helposti muodostuvat biofilmit. Tämän lisäksi mittareita huolletaan parin viikon välein ja kalibroidaan kaksi kertaa vuodessa. Mittalaitteiden laadusta tutkimuksen onnistuminen ei siis jää kiinni!

Automaattinen sensori
Automaattiset sensorit mittaavat Savijoen vedenpinnan korkeutta sekä veden lämpötilaa, sameutta, suolaisuutta ja liuennutta orgaanisen aineksen pitoisuutta kerran tunnissa. Kuva: Mikko Kiirikki

Automaattisilla antureilla ei kuitenkaan saada vedenlaadusta kokonaiskuvaa. Siksi Savijoesta otetaan muutamia kertoja kuukaudessa myös vesinäytteitä, joista analysoidaan Rambollin Lahden laboratoriossa pitkä lista vedenlaatua kuvaavia muuttujia. Ehkä tärkein näistä on liuennut fosfori, jota ei – lukuisista yrityksistä huolimatta – edelleenkään voida määrittää automaattisilla sensoreilla. Liuennut fosfori on sataprosenttisesti leville käyttökelpoista, ts. täysin rehevöittävää fosforia. Maa-ainesfosforin sen sijaan on ensin vapauduttava liuenneeseen muotoon, jotta levät ja muut vesien perustuottajat voisivat sen käyttää hyväkseen. Kipsikäsittelyn toivotaan vähentävän niin liuenneen kuin maa-ainesfosforinkin kulkeutumista pelloilta vesiin. Myös liuenneen orgaanisen hiilen pitoisuuden odotetaan laskevan. Toive on, että pitoisuudet laskisivat erityisesti runsasvetisinä kausina, jolloin suurin osa ravinteista kulkeutuu vesiin.

Kun merkittävä osa kipsistä on nyt jo levitetty Savijoen pelloille, voidaanko kipsikäsittelyn tehosta sanoa jo jotakin?

Tämä syksy on ollut varsin kuiva ja Savijoen vesi on ollut melko kirkasta niin kipsin levitysalueella kuin vertailualueellakin. Lokakuun alussa saatiin kuitenkin jonkin verran sateita. Tulokset tuolta ajalta ovat rohkaisevia. Savijoen yläjuoksulla, jossa kipsiä ei siis ole käytetty, sameus nousi arvoon 68 FTU. Se ei toki ole paljon samealle Savijoelle, mutta kipsin levitysalueella sameus oli vieläkin matalampi: korkeimmillaan 31 FTU ja usein reilusti alle puolet siitä mitä yläjuoksun vertailualueella. Vesi vaikuttaa siis kirkastuneen ja myös orgaanisen hiilen pitoisuus on ollut kipsinlevitysalueella selvästi matalampi.

”Tulokset ovat rohkaisevia.”

Johtopäätelmiä kipsin tehosta joudutaan kuitenkin odottamaan pitkään, Savijokea seurataan vielä ainakin kaksi vuotta. Ensimmäisistä kunnon syyssateiden aiheuttamasta valuntapiikistä voidaan tosin päätellä jo paljon enemmän. Valuntapiikkiä voidaan kuitenkin joutua odottamaan, sillä seuraavatkin 10 vuorokautta ovat sääennusteen mukaan kuivia.

Maapallon fosforin alkuperä

Savijoen kipsipilotin keskiössä on fosfori, jota yritetään pitää pelloilla kasvien käytettävissä ja samalla poissa vesistöistä. Mutta mistä pelloilla oleva fosfori on peräisin? Vastaus löytyy hieman kauempaa kuin ensin ajattelisi. Fosforin alkuperästä kertoo tohtorikoulutettava  Tuomas Kangas Turun Yliopiston Fysiikan ja tähtitieteen laitokselta.

Maailmankaikkeuden alkuräjähdyksessä syntyi lähinnä vain kahta kevyintä alkuainetta, vetyä ja heliumia. Raskaampia alkuaineita syntyi lähes olematon määrä, ja siitäkin suurin osa oli litiumia. Maailmankaikkeuden fosfori, kuten muutkin heliumia raskaammat alkuaineet, on syntynyt lähes pelkästään tähdissä ja levinnyt tähtienväliseen avaruuteen supernovien myötä.

cas-a
Supernovajäänne Cassiopeia A. Kuva: NASA

Auringon kaltainen tähti ei pysty tuottamaan fuusioreaktioilla happea raskaampia alkuaineita. Massiivisemmissa tähdissä reaktiot voivat kuitenkin edetä raskaampiin alkuaineisiin, raskaimmillaan rautaan asti. Fosfori on järjestysluvultaan 15. alkuaine eli fosforiatomin ydin sisältää 15 protonia. Parittomasta protonien määrästä johtuen fosfori ei kuulu tyypilliseen fuusioreaktioiden ketjuun, koska heliumia raskaammat alkuaineet syntyvät enimmäkseen yhdistelemällä heliumatomeja, joissa on kaksi protonia. Fuusiotuotteet heliumista eteenpäin ovat pääosin hiili (järjestysluku 6), happi (8), neon (10), magnesium (12), pii (16) ja rauta (26).

Fuusion sijasta pääasiallinen fosforin syntyprosessi tähdissä on ns. s-prosessi, jossa atomi, tässä tapauksessa piiatomi, kaappaa ympäristöstään neutronin. Uuden atomin ollessa epävakaata isotooppia yksi sen protoneista muuttuu radioaktiivisessa ns. betahajoamisessa neutroniksi. Tuloksena on fosforiatomi.

Tähdissä syntyneen fosforin täytyy myös jotenkin päätyä tähden sisuksista avaruuteen, jotta se voisi myöhemmin olla mukana muodostamassa Maan kaltaista planeettaa. Fosforia muodostavat massiiviset tähdet räjähtävät elinkaarensa lopuksi supernovina, ja nämä valtavat räjähdykset ovat tarpeeksi voimakkaita levittääkseen syntyneet alkuaineet laajalle alueelle. Lisäksi supernovissa hetkellisesti vallitsevat olosuhteet ovat niin äärimmäisiä, että niissä syntyy lisää fosforia neutronikaappauksissa. Tähden täytyy siis olla tarpeeksi massiivinen tuottaakseen piitä ja räjähtääkseen supernovana; tähän tarvitaan vähintään noin 8 Auringon massaa.

”Maapallon fosfori, kuten muutkin raskaat alkuaineemme, on siis peräisin lähistöllä ammoin räjähtäneistä massiivisista tähdistä”

Tälle mallille saatiin vahvistus tarkkailemalla Kassiopeian tähdistössä sijaitsevaa Cas A -tähtisumua, joka on jäänne muinaisesta supernovaräjähdyksestä. Sumun fosforipitoisuudet vastasivat juuri sitä, mitä yllämainituilta prosesseilta odotettiin. Maapallon fosfori, kuten muutkin raskaat alkuaineemme, on siis peräisin lähistöllä (tähtitieteellisessä mielessä!) ammoin räjähtäneistä massiivisista tähdistä, joiden materiaali sekoittui tähtienväliseen aineeseen ja tiivistyi lopulta uudeksi tähdeksi, Auringoksi, ja sen ympärille syntyneiksi planeetoiksi.

Tohtorikoulutettava Tuomas Kangas
Tuorlan observatorio
Fysiikan ja tähtitieteen laitos
Turun yliopisto

Tutkija kipsissä

Vanha keino vai pussillinen uusia?

Petri Ekholm, Erikoistutkija, Suomen ympäristökeskus

Maatalouden fosforipäästöt ovat laskeneet, mutta eivät riittävästi vesien kannalta. Tehokkaille fosforin vähennysmenetelmille on siis tarvetta. Maatalouden vesiensuojelutoimet voitaneen jakaa kolmeen ryhmään. Ensimmäiseen kuuluvat ikivanhat toimet, joilla parannetaan maan kasvukuntoa ja rakennetta, jolloin hyvän sadon mukana poistuu paljon ravinteita ja maa kestää eroosiota. Toinen ryhmä koostuu ympäristökorvausjärjestelmästä tutuista menetelmistä, esimerkiksi talviaikaisesta kasvipeitteisyydestä, tasapainoisesta lannoituksesta, kosteikoista ja suojavyöhykkeistä. Kolmas ryhmä voitaisiin nimetä nykyjargonin mukaisesti innovatiivisiksi menetelmiksi, joissa esimerkiksi teollisuuden sivuvirtojen avulla estetään ravinnepäästöjä.

Peltojen kipsikäsittely voisi kuulua kaikkiin kolmeen ryhmään. Kipsiä on käytetty iät ajat maan rakenteen parantajana, mutta sen käyttö fosforipäästöjen hillitsijänä on uutta, ja olisi suotavaa, että se kuuluisi ympäristökorvauksen piiriin. Vantaanjoen latvoilla sijaitsevan Nummenpään kylän pelloilla tehdyssä pilotissa[1] kipsi vähensi sekä liuenneen että maa-ainesfosforin kulkeutumista pelloilta vesiin ja sitoi maahan hiiltä. Se vaikutti soveltuvan tilalle kuin tilalle ja oli muihin fosforin vähentämismenetelmiin verrattuna ylivoimaisen kustannustehokas.

Kipsiä levitetään Nummenpään pelloilla tehdyssä pilotissa. Kuva: Sakari Alasuutari

Savijoesta Savejoki

Nummenpään lupaavia tuloksia koetellaan Lounais-Suomen Savijoella. SAVE-hankkeen perusidea on yksinkertainen: levitetään kipsiä pelloille niin laajalti, että tulokset kertovat luotettavasti kipsin tehon ja mahdolliset haittavaikutukset sekä antavat tietoa siitä, miten kipsin kuljetus ja levitys käytännössä onnistuvat ja miten viljelijät menetelmän kokevat.

Kipsin vaikutuksen arvioimiseksi Savijoen perusnäytteenottoa on täydennetty asentamalla jatkuvatoimiset vedenlaatuanturit Savijoen keskijuoksulle Yliskulmaan ja Parmanharjulle. Lisäksi joesta otetaan runsaasti vesinäytteitä, joista analysoidaan monenlaisia vedenlaatua kuvaavia muuttujia. Alueelle pyritään houkuttelemaan myös muuta tutkimusta synergiaetujen vuoksi, ja niinpä esimerkiksi torjunta-aineiden kulkeutumista tutkitaan tehostetusti Savijoella. Parhaillaan Savijoen seurannassa on menossa ennen kipsiä –jakso, johon kipsin levityksen jälkeisen ajan tuloksia tullaan vertaamaan.

Savijoen virtaamaa mitataan ns. pöytäsuolamenetelmällä Kuva: Petri Ekholm

Odotettavissa kirkastuvaa

Jos kipsin levitys toteutuu suunnitellusti syksyllä 2016, Savijoen keskijuoksun vesi lienee tulevana syksynä aiempaa kirkkaampaa, mutta yläjuoksun kipsitön vertailualue pysyy totutun sameana. Tutkimuksessa, joka tehdään säiden armoilla, voi sattua yllätyksiä. Syksy 2016 voi olla vaikkapa ennätyksellisen kuiva, mikä kyllä helpottaisi kipsin levitystä, mutta jokivesi olisi kirkasta ilman kipsiäkin. Päivästä, viikosta, kuukaudesta ja vuodesta toiseen vaihtelevat sääolot pyritään ottamaan huomioon tilastotieteellisellä mallilla. Perusideana on vedenlaadun suhteuttaminen veden virtaukseen ja oletuksena se, että tietyn suuruisella virtauksella jokivesi on kipsin levityksen jälkeen kirkkaampaa kuin se oli ennen kipsiä vastaavansuuruisella virtaamalla. Vedessä olisi vähemmän niin maahiukkasiin sitoutunutta kuin suoraan rehevöittävää liuennutta fosforia. Jos näin todella tapahtuu eivätkä esimerkiksi sulfaatin toksisuustestit paljasta epämiellyttäviä yllätyksiä, tulokset antavat hyvän tietopohjan vieläkin laajemman kipsikäsittelyn toteuttamiseen. Niin laajan, että rannikkovesiin päätyvän fosforin määrää saadaan kunnolla vähennettyä, ja ehkä Saaristomeren rannikkovedetkin vähitellen kirkastuvat.

[1] Kipsipohjaiset tuotteet maatilojen fosforikuormituksen vähentämiseen, TraP-hanke (2007–2013)