Kipsin testausta erilaisilla mailla – Ruukkukokeiden tulokset

Vaikuttaako kipsi peltomaan ravinnetasapainoon, kasvukuntoon tai mikrobiaktiivisuuteen? Näitä erityisesti viljelijöitä kiinnostavia kysymyksiä on selvitetty paitsi SAVE-pilottialueella maa- ja kasvinäyttein, myös maanparannusaineita testaavissa ruukkukokeissa. Ruukkukokeissa kipsi lisäsi magnesiumin ja kaliumin huuhtoumista, mutta savimailla vaikutus maan ravinnetilaan oli vähäinen eikä vaikuttanut viljavuusluokkaan. Satoisuutta kipsi ei ainakaan vähentänyt. Maan biologista aktiivisuutta kuvaavaan maahengitykseen kipsillä ei kokeen mukaan ollut vaikutusta. Vesiensuojelun kannalta keskeinen havainto oli, että maanparannusaineet vähensivät sadetuskokeen aiheuttamaa rasitusta maan rakenteelle, jolloin sadetuksen jälkeen kylvetyllä raiheinällä oli paremmat kasvuolosuhteet.

SYKE:n erikoistutkija Petri Ekholm on aiemmin kirjoittanut SAVE-hankkeen pilottialueen neljän vuoden seurannan maa- ja kasvinäytetuloksista. Niiden mukaan peltojen pintamaassa ei havaittu vähenemää magnesium tai kalium -määrissä. Savimailla, joille kipsiä ensisijaisesti suositellaan, onkin yleensä runsaasti sekä kaliumia että magnesiumia. Myöskään viljelijäkyselyissä kipsin ei havaittu heikentävän peltomaan laatua tai satoisuutta ja osalla vaikutukset olivat positiivisia.

Luonnonvarakeskuksen erikoistutkija Helena Soinne kertoo nyt tarkemmin, millaisia tuloksia maanparannusaineita testanneissa ruukkukokeissa saatiin.

Luonnonvarakeskuksen ja Suomen ympäristökeskuksen yhteisessä kokeessa tutkittuun kipsin, rakennekalkin ja maanparannuskuitujen vaikutuksia valumaveden laatuun ja kasvien ravinteidenottoon (kuvat: Johanna Nikama ja Helena Soinne).

Luonnonvarakeskuksessa tehtiin astiamittakaavan koe, jossa selvitettiin vesiensuojelutarkoituksessa käytettävien maanparannusaineiden (kipsi, rakennekalkki ja kuitulietteet) vaikutuksia maan sadontuottokykyyn ja sadon laatuun. Kokeessa oli mukana neljä erilaista maata, joissa oli erilaiset savespitoisuudet (6–69%) ja helppoliukoisen magnesiumin pitoisuudet (75–830 mg/l). Karkeimmassa, ja vähiten magnesiumia sisältävässä maassa Ca/Mg -suhde oli 9, kun taas savisimmassa maassa suhde oli 4. Ennen kasvatuskokeen aloittamista maanparannusaineiden vaikutuksia valumaveden laatuun ja erityisesti magnesiumin huuhtoutumiseen selvitettiin sadetuskokeissa laboratoriossa.

Ruukkukoetutkimuksen sadetuskokeen huuhtoutumistuloksista näkyi, että kipsikäsittely lisäsi magnesiumin huuhtoutumista. Määrällisesti eniten magnesiumia huuhtoutui kipsikäsitellyistä savisimmista maista ja vähiten karkeasta maasta. Kun huuhtoutuneet määrät suhteutetaan maan helppoliukoisen magnesiumin määrään, oli huuhtoutuneen magnesiumin määrä savisilla mailla noin 5% maan koko helppoliukoisen magnesiumin määrästä, kun karkealla maalla se oli jopa 15%. Käsittelemättömistä ruukuista, karkeista ja savimaista, sadetuskokeissa huuhtoutuneen magnesiumin määrät olivat samaa suuruusluokkaa, mutta suhteutettuna taas maan helppoliukoisen magnesiumin määrään, käsittelemättömistä karkean maan ruukuista valumaveden mukana lähti noin 2,5% maan helppoliukoisesta magnesiumista, kun savimaissa määrä jäi alle yhden prosentin.

Sadetuskokeiden jälkeen kaikille maille tehtiin viljavuusuutto helppoliukoisten ravinteiden määrittämiseksi. Magnesiumin osalta viljavuusluokka ei savimaissa muuttunut maanparannusainekäsittelyjen ja sadetusten seurauksena. Käsittelemätön karkea maan oli sadetuskokeen jälkeen luokassa ”huononlainen”, mutta kipsikäsitelty karkea maa putosi sadetuskokeessa huuhtoutuneen magnesiumin vuoksi luokkaan ”huono”. Muut maanparannusaineet eivät vaikuttaneet magnesiumin viljavuusluokkiin. Kaliumin viljavuusluokkaan ei kipsi- eikä muutkaan maanparannusainekäsittelyt vaikuttaneet lainkaan, vaikka kipsi jonkun verran kaliumin huuhtoutumista lisäsikin.

Sadetuskokeen jälkeen maista mitattiin myös hiilidioksidintuotto eli maahengitys, joka kuvaa maan biologista aktiivisuutta. Kipsillä käsiteltyjen maiden hiilidioksidintuotto oli samaa tasoa kuin käsittelemättömistä tai rakennekalkilla käsitellyistä maissa, mutta luonnollisesti maat, joihin oli lisätty orgaanista maanparannusainetta (kuituliete) hengittivät enemmän.

Sadetuskokeiden jälkeen maahan kylvettiin raiheinää ja maat lannoitettiin typellä ja fosforilla. Raiheinä sato korjattiin viisi kertaa ja sadon ravinnepitoisuudet tutkittiin ensimmäisestä, kolmannesta ja viidennestä sadosta, jos satoa oli korjattavaksi asti. Kontrollimaissa, joihin ei ollut lisätty maanparannusaineita, raiheinä kasvoi todella huonosti, eikä ensimmäisen sadonkorjuun jälkeen saatu enää riittävästi biomassaa ravinnepitoisuuksien määrittämiseksi. Syynä kontrollimaiden huonoon kasvuun oli todennäköisesti sadetuskokeen aiheuttama rasitus maan rakenteelle. Maanparannusaineet ehkäisevät maan liettymistä, eikä sadetuskäsittelyt näin ollen olleet yhtä tuhoisia käsitellyille maille.

Suurimmat raiheinäsadot saatiin kipsillä ja rakennekalkilla käsitellyistä ruukuista, kun kaikki viisi satoa laskettiin yhteen. Viimeisessäkään sadossa ei kipsillä käsitellyn karkean maanraiheinäsadon magnesiumpitoisuus juurikaan poikennut savimaista tai esimerkiksi rakennekalkilla käsiteltyjen maiden raiheinästä. Korjattujen satojen mukana poistuneen magnesiumin määrä voidaan karkeasti arvioida kolmesta sadosta mitattujen raiheinän magnesiumpitoisuuksien avulla. Savimaiden alkuperäisestä helppoliukoisen magnesiumin määrästä raiheinäsatojen mukana lähti alle 10%, kun taas karkeassa maassa raiheinän mukana poistuneen magnesiumin määrä oli noin 20–50% alkuperäisestä helppoliukoisen magnesiumin määrästä.

Yllättävää kokeessa oli, miten hyvin kipsillä käsitelty ja magnesiumin osalta viljavuusluokassa ”huono” oleva karkea maa kasvoi. Syynä voi olla, että ruukkuja ei ennen kasvatuskoetta tehdyissä sadetuksissa huuhdeltu tarpeeksi paljon, jolloin kipsin mukana lisätyn kalsiumin kationinvaihtopaikoilta syrjäyttämät magnesiumionit jäivätkin maaveteen välittömästi kasvien saataville. Tällaisessa tilanteessa kasvit varmastikin voisivat hyödyntää maassa olevan vähäisenkin magnesiumin hyvin tehokkaasti, eikä kasvua rajoittavaa puutosta olisi havaittavissa. Karkeilla mailla, joiden helppoliukoisen magnesiumin pitoisuus on lähtökohtaisesti alhainen, kipsin aiheuttama magnesiumin huuhtoutumisen lisääntyminen voi todennäköisesti pidemmän ajan kuluessa kuitenkin johtaa magnesiumin puutokseen. Tosin tällaiset maat tuskin ovat vesiensuojelumielessä kipsin käyttökohteita muutenkaan.

Helena Soinne, erikoistutkija, Luonnonvarakeskus (Luke)

 

 

Kipsin vaikutukset pintamaahan ja kasvustoon lyhytaikaisia

 

Petri Ekholm
Erikoistutkija
SYKE
+358 2952 51102
petri.ekholm (a) syke.fi

Kipsin levitys savipelloille vaikuttaa pintamaan ja kasvuston ravinne- ja hivenainepitoisuuksiin melko vähän. Jos maassa on kaliumin tai magnesiumin puutetta, on näiden ravinnekationien riittävyyteen kuitenkin hyvä kiinnittää huomiota kipsiä käytettäessä.

Vaikutukset maahan

Kipsi liukenee maassa kalsium- ja sulfaatti-ioneiksi. Tämä näkyy viljavuusanalyysin johtoluvussa. Ennen syksyllä 2016 toteutettua kipsinlevitystä, tutkittujen kipsilohkojen johtoluku oli keskimäärin 0,9, mutta seuraavana keväänä 3,4. Johtoluvun nousu oli kuitenkin lyhytaikainen: vaikka se oli vielä toukokuussa 2018 keskimäärin korkeampi kuin ennen kipsiä, ero ennen kipsiä -tilanteeseen ei enää ollut tilastollisesti merkitsevä.

Johtoluku kuvaa maanesteen sähkönjohtavuutta, jota kalsium ja sulfaatti kahdenarvoisina ioneina voimakkaasti nostavat. Johtoluvun nousu kipsikäsittelyn jälkeen oli siis odotettavissa – ja kipsivaikutuksen puolesta toivottavaa. Sen sijaan odotettavissa ei ollut, että johtoluku vaihteli lohkojen ja rinnakkaisnäytteiden välillä, myös kipsittömillä vertailulohkoilla. Eräällä kipsikäsitellyllä hiuesavilohkolla johtoluku ei noussut lainkaan, kun taas toisella vastaavanlaisella lohkolla johtoluku oli peräti 7 ensimmäisen kipsikäsittelyn jälkeisen talven jälkeen. Vaihtelu kertoo siitä, että kipsi ei ole levinnyt tasaisesti ja sekoittunut maahan. Ihan kaikki kipsi ei tosin liukene heti. Kipsiä on ollut jonkin verran havaittavissa pelloilla vielä levityksen jälkeisen talven jäljiltäkin, kuten suurin osa SAVEn pilottiviljelijöistä havaitsi.

Kipsissä peltohehtaarille tuli yli 600 kiloa rikkiä, kun lannoitteena rikkiä annetaan suurimmillaan muutamia kymmeniä kiloja. Maan rikkipitoisuus nousikin tilastollisesti merkitsevästi ensimmäisenä ja toisena kipsin jälkeisenä vuotena. Samoin kuin johtoluvussa myös rikissä oli kuitenkin suurta vaihtelua lohkojen ja rinnakkaisnäytteiden välillä. Kalsiumissa, jota kipsin mukana tuli maahan 800 kiloa hehtaarille, ei havaittu merkitseviä muutoksia, ehkä siksi, että kalsiumia on maassa luonnostaan runsaasti. Myös aiemmissa tutkimuksissa on havaittu johtoluvun ja rikin kasvu vuoden–kahden ajaksi, ja suuri vaihtelu näytteiden välillä.

Kalsium voi parantaa hienojakoisen maan, kuten saven rakennetta muodostamalla maahiukkasten välisiä mikromuruja. Kalsium voi parantaa maan rakennetta myös silloin, kun maassa on liikaa magnesiumia. Vaikutus perustuu kationinvaihtoreaktioihin, joissa kalsium “huuhtoo” hiukkasten pinnalta muita kationeja. Samalla tavoin karkeilla mailla kipsi voi lisätä magnesiumin ja kaliumin puutetta. Magnesiumissa ja kaliumissa ei kuitenkaan havaittu Savijoen peltojen pintamaassa muutoksia, lukuun ottamatta kaliumpitoisuuden nousua kipsilohkoilla ensimmäisenä ja toisena vuonna kipsin levityksen jälkeen. Savimailla, joihin kipsiä ensisijaisesti suositellaan, on yleensä runsaasti niin kaliumia kuin magnesiumia.

Kipsissä maahan levitettiin noin 8 kg/ha fosforia, mikä kannattaa ottaa huomioon lannoitettaessa. Viljavuusfosforissa ei havaittu tilastollisesti merkitsevää muutosta. Maan pH-arvo laski kipsilohkoilla yhden-kaksi kymmenystä kahtena ensimmäisenä kipsin jälkeisenä vuotena. Maan rakenteen muutoksia ei tutkittu.

Kolmelta kipsilohkolta ja kahdelta käsittelemättömältä lohkolta otettiin maanäytteitä pintakerroksen lisäksi (0–20 cm) myös kerroksista 20–40 cm ja 40–60 cm. Tulokset osoittivat, että rikki kulkeutuu maassa nopeasti alaspäin, sillä se sitoutuu heikosta maahiukkasiin, mutta kalsiumin, magnesiumin ja kaliumin kulkeutumista maassa alaspäin ei selvästi havaittu.

 

Vaikutukset kasvustoon

Kipsiä voidaan pitää rikki- ja kalsiumlannoitteena, tosin lannoitekäytössä levitysmäärät ovat pienempiä kuin vesiensuojelukäytössä. Kipsin ei ole aiempien tutkimusten – eikä myöskään Savijoen viljelijöiden mukaan – havaittu vaikuttavan epäedullisesti sadon määrään tai laatuun. SAVE-hanke ei suoraan arvioinut sadon määrää, mutta kasvustonäytteitä otettiin kemialliseen analyysiin samoilta paikoilta kuin maanäytteitäkin. Kasvien rikkipitoisuus kasvoi kaksinkertaiseksi kahtena ensimmäisenä kipsin jälkeisenä vuonna, mutta neljäntenä vuonna eroa ei enää havaittu. Muut muutokset olivat vähäisiä. Kasvien keskimääräiset rautapitoisuudet olivat kipsilohkoilla vuosina 2017 ja 2020 alentuneita samoin kuin fosforipitoisuudet vuonna 2020. Yleisesti huomionarvoista on se, että monella lohkolla – kipsikäsitellyllä tai -käsittelemättömällä – seleenin pitoisuus oli alle analyysin alarajan. Seleenilannoitukseen kannattaakin alueella kiinnittää erityistä huomiota.

Tietolaatikko: SAVE-hanke otti vuosina 2016, 2017, 2018 ja 2020 maa- ja kasvinäytteitä 29 havaintopaikalta, joista 11 oli kipsikäsiteltyjä ja 18 vertailulohkoja. Kultakin GPS-määritellyltä paikalta otettiin kaksi kokoomanäytettä. Maanäytteistä (0–20 cm) määritettiin viljavuusanalyysi hehkutushäviöllä täydennettynä. Kesä-heinäkuussa otetuista kasvinäytteistä määritettiin rikki, fosfori, typpi, kalsium, magnesium, kalium, natrium, boori, kupari, mangaani, rauta, sinkki ja seleeni. Näytteet otti ProAgrian asiantuntijat ja ne määritettiin Eurofins Viljavuuspalvelussa ja Lukessa.

Kipsi lisää kaliumin ja magnesiumin huuhtoutumista

Kipsin vaikutus peltomaan magnesium- ja kaliumpitoisuuteen on ollut esillä mm. OSMO-hankkeen tutkimuksissa, joiden mukaan kipsi vähensi maaperän kalium- ja magnesiumpitoisuuksia osalla lohkoista. SAVE-hankkeessa samanlaista vaikutusta ei ollut havaittavissa pilottialueen savimaiden maaperänäytteistä. Nyt käynnissä oleva ruukkukoetutkimus  mahdollistaa useiden maatyyppien tutkimisen ja kokeet myös samantyyppisillä mailla kuin mihin OSMO-hankkeen tulokset viittaavat. Varsinais-Suomessa käynnissä olevassa KIPSI-hankkeessa viljelijöitä on ohjeistettu huomioimaan, että kipsitettävien peltojen Mg- ja K-tasot eivät saa olla huonoja tai huononlaisia.

Erikoistutkija Helena Soinne Luonnonvarakeskuksesta kertoo ruukkukoetutkimuksen tähänastisista tuloksista.

Luonnonvarakeskuksen kasvihuoneessa Jokioisilla on käynnissä kasvatuskoe, jossa tutkitaan vesiensuojelutarkoituksessa käytettävien maanparannusaineiden (kipsi, rakennekalkki ja kuitulietteet) vaikutuksia maan sadontuottokykyyn. Ennen kasvatuskokeen aloittamista maanparannusaineiden vaikutuksia valumaveden laatuun ja erityisesti kationien huuhtoutumiseen on selvitetty sadetuskokeissa laboratoriossa.

Luonnonvarakeskuksen ja Suomen ympäristökeskuksen yhteisessä kokeessa tutkitaan kipsin, rakennekalkin ja maanparannuskuitujen vaikutuksia valumaveden laatuun ja kasvien ravinteidenottoon (kuvat: Helena Soinne).

Maanparannusaineet ovat koostumukseltaan erilaisia ja sisältävät eri määriä kasveille tärkeitä ravinteita. Tietyn ravinteen pitoisuuden kasvu maavedessä vaikuttaa ravinnetasapainoon maahiukkasten pinnalla ja voi johtaa tärkeiden ravinnekationien huuhtoutumiseen.

Kipsin mukana maahan tulee runsaasti mm. kalsiumia. Kalsiumilla on positiivisia vaikutuksia maan rakenteelle ja siten esimerkiksi aitosavimaissa kalsiumin runsastuminen on pääasiassa hyvä asia. Kalsium voi kuitenkin syrjäyttää maahiukkasten pinnoilta magnesiumia ja kaliumia, jolloin nämä kalsiumin syrjäyttämät ravinteet ovat alttiina huuhtoutumiselle.

Ruukkukoetutkimuksen sadetuskokeen huuhtoutumistuloksista näkyikin selvästikin, että kipsillä käsiteltyjen maiden läpi valuneen veden magnesium- ja kaliumpitoisuudet olivat korkeampia kuin muissa käsittelyissä. Alustavien tulosten perusteella näyttää siltä, että kipsikäsitellyistä maista huuhtoutui kolmen sadetuskerran aikana yli kaksinkertainen määrä kaliumia ja jopa 5–8 kertainen määrä magnesiumia käsittelemättömiin maihin verrattuna. Noin yhden kuukauden syyssateita (70 mm) vastaava vesimäärä huuhtoi noin 5 % savimaan koko helppoliukoisesta magnesiumista (viljavuusuuton magnesium), mutta karkeimmasta maasta huuhtoutuva magnesium oli jopa 15 % helppoliukoisen magnesiumin kokonaismäärästä. Huuhtoutunut kalium puolestaan oli pääsääntöisesti alle 5 % maan helppoliukoisen kaliumin (viljavuusuuton kalium) kokonaismäärästä sekä karkealla maalla että savimailla. Muut maanparannusaineet vaikuttivat vain vähän ravinnekationien huuhtoutumiseen.

Sadetuskokeen perusteella ei voida kuitenkaan vielä sanoa näkyykö kationien huuhtoutuminen maanäytteiden helppoliukoisten ravinteiden määrässä. Kipsilisäyksen aiheuttaman kationien huuhtoutumisen vaikutus viljavuusuuton tuloksiin riippuu todennäköisesti maalajista ja orgaanisen aineksen määrästä maassa. Lopputulos nähdään, kun ruukkukokeen maille tehdään viljavuusuutto kokeen lopussa.

Astiakokeessa kasvatettavasta raiheinästä voidaan korjata useampi sato (kuva: Johanna Nikama).

Sadetuskokeiden jälkeen maat lannoitettiin typellä ja fosforilla ja ruukkuihin kylvettiin raiheinää. Maanparannusaineilla käsiteltyjen maiden kolmen ensimmäisen sadon yhteenlasketut biomassat olivat samaa suuruusluokkaa. Kolmen ensimmäisen sadon perusteella kipsi ei siis alentanut sadontuottoa myöskään karkeimmassa maassa, josta kipsikäsittelyn seurauksena oli huuhtoutunut eniten ravinnekationeja suhteessa maan ravinnevarastoon.

SAVE-hankkeen pilottialueella otettujen kasvinäytteiden analysointi ei antanut viitteitä siitä, että kipsi olisi haitannut kasvien magnesiumin- ja kaliuminottoa. Tulos saattaa johtua pilottialueen maiden korkeista magnesiumin ja kaliumin lähtöpitoisuuksista, jolloin kipsin aiheuttama huuhtoutuminen ei ole näkynyt seurannassa. Ruukkukokeet tulevat tuottamaan lisätietoa myös mahdollisista kipsin aiheuttamista ravinnepuutoksista, sillä asiaa selvitetään vielä kasvianalyysien avulla. Myös kipsin vaikutusta ravinteiden huuhtoutumiseen sekä maan mikrobiologiaan selvitetään. Tuloksista kerromme lisää ensi vuonna.

Helena Soinne, erikoistutkija, Luonnonvarakeskus (Luke)

Maanparannusaineet ruukkukoetutkimuksessa – Kipsin vaikutusta kasvien ravinteidenottoon ja peltomaan mikrobeihin tutkitaan lisää

Miten kipsi vaikuttaa maan kationikoostumukseen ja kasvien ravinteidenottoon? Entä miten peltomaan mikrobit reagoivat kipsikäsittelyyn? Erikoistutkija Helena Soinne Luonnonvarakeskuksesta (Luke) kertoo helmikuussa alkavista ruukkukokeista, joissa kipsin ja muiden vesiensuojelutarkoituksessa käytettävien maanparannusaineiden vaikutuksia tutkitaan.

Luonnonvarakeskuksessa ja Suomen ympäristökeskuksessa (SYKE) ollaan käynnistämässä useiden hankkeiden yhteistyönä koetta, jossa tutkitaan vesiensuojelutarkoituksessa käytettävien maanparannusaineiden vaikutuksia maan kationikoostumukseen, kasvien ravinteiden ottoon, ravinteiden huuhtoutumiseen sekä maan mikrobiologiaan. Kokeessa testataan kipsin, rakennekalkin ja maanparannuskuitujen vaikutuksia. Koe toteutetaan ruukkumittakaavassa ja kokeessa on mukana neljä lajitekoostumukseltaan tai kationikoostumukseltaan erilaista maata.

Helmikuun alussa käynnistyvän tutkimuksen koemaat on jo punnittu ruukkuihin. Maiden kosteudet on säädetty huomioiden niiden erilaiset vedenpidätyskyvyt. Kuva: Helena Soinne (Luke)

Maanparannusaineena tai vesiensuojelukeinona peltoon levitettävän kipsin tai rakennekalkin mukana maahan tulee runsaasti kalsiumia. Kalsiumilla on positiivisia vaikutuksia maan rakenteelle ja siten esimerkiksi aitosavimaissa kalsiumin runsastuminen on pääasiassa hyvä asia.

Kuitenkin karkeammilla mailla runsas kalsiumin lisääminen voi johtaa tilanteeseen, jossa kasvien kasvulle välttämättömien magnesiumin ja kaliumin huuhtoutuminen lisääntyy. Lisätty kalsium voi vaikuttaa peltomaan kationikoostumukseen syrjäyttämällä maahiukkasten pinnoilta muita ravinnekationeja kuten kaliumia ja magnesiumia. Nämä kalsiumin syrjäyttämät ravinteet ovat alttiina huuhtoutumiselle ja kasveilla voi sen seurauksena ilmetä magnesiumin ja kaliumin puutetta. Runsaasti kalsiumia sisältävien kipsin ja rakennekalkin käyttöä vesiensuojelumenetelmänä suositellaan erityisesti savipelloille, joissa magnesiumin puutteen esiintyminen on epätodennäköistä. Esimerkiksi SAVE-hankkeen aiemmissa tutkimuksissa kipsikäsittelyn ei ole havaittu haittaavan kasvien magnesiumin- ja kaliuminottoa.

Kokeessa jäljitellään syyssateiden maata huuhtovaa vaikutusta ja mitataan maan läpi suotautuvan veden ravinne- ja kationipitoisuuksia. Tekosyksyn ja mahdollisten helmikuun pakkasten jälkeen ruukkuihin kylvetään keväällä raiheinää, josta pyritään korjaamaan useampi sato. Mittaamalla sadon määrää ja laatua saadaan selville ovatko eri maanparannusaineet vaikuttaneet maan ravinnetilaan siten, että kasvien kasvu olisi heikentynyt.

Kipsin, rakennekalkin ja maanparannuskuitujen käyttö voi vaikuttaa myös maan mikrobitoimintaan. Esimerkiksi rakennekalkki voi paikallisesti nostaa maan pH:n hyvin korkeaksi. Tällaiset nopeat muutokset voivat olla tuhoisia mikrobeille. Toisaalta pidemmällä aikavälillä maan rakenteen parantumisen myötä maan mikrobitoiminta ja -diversiteetti voivat parantua entisestään.

Perustettavassa ruukkukokeessa seurataankin maan mikrobitoiminnan muutoksia pian kipsin, rakennekalkin ja kuitulietteen lisäämisen jälkeen sekä lisäksi pidemmän ajan kuluttua, kun ruukusta on jo korjattu satoa.

Kokeessa mukana olevilla kipsillä, rakennekalkilla ja kuitulietteillä voidaan kaikilla vähentää pelloilta vesistöihin päätyvää fosforikuormitusta. Kuormitusvähennyksen suuruus riippuu maanparannusaineen ominaisuuksien lisäksi myös mm. maalajista ja pellon kunnosta kokeen perustamishetkellä. Helmikuussa perustettavassa ruukkukokeessa saadaan tietoa myös siitä, kuinka eri maanparannusaineet toimivat erilaisilla mailla. Tästä tiedosta on apua, kun mietitään missä kustakin maanparannusaineesta saataisiin vesiensuojelun kannalta suurin hyöty.

Helena Soinne, erikoistutkija, Luonnonvarakeskus (Luke)

 

Päteekö aineen häviämättömyyden laki myös kipsiin?

Petri Ekholm
Erikoistutkija
SYKE
+358 2952 51102
petri.ekholm (a) ymparisto.fi

Erikoistutkija Petri Ekholm Suomen ympäristökeskuksesta (SYKE) kertoo tuloksia SAVE-hankkeessa otetuista maa- ja kasvinäytteistä. Kipsi ei ole haitannut kasvien ravinteidenottoa, mutta kipsin sisältämän rikin kulkeutuminen maassa sekä kipsin vaikutusmekanismin tarkempi tuntemus vaativat vielä lisätutkimusta. Maa- ja kasvinäytteitä tullaan ottamaan taas vuonna 2020, jolloin käsityksemme menetelmästä edelleen tarkentuu.

Veden sameus ja fosforipitoisuus pienenivät Savijoessa kipsinlevityksen seurauksena, mutta mitä tapahtui kipsikäsitellyillä pelloilla? Kipsiä levitettiin 356 peltolohkolle, ja kaikkia niitä ei verrokkeineen voitu mitenkään tutkia. Sen sijaan valitsimme Savijoen valuma-alueen vertailu- ja kipsinlevitysalueilta 28 eri maalajeja edustavaa lohkoa, joilta otettiin kultakin kaksi kokoomanäytettä pintamaasta ja kasveista. Näytteitä otettiin yhden kerran ennen kipsinlevitystä (vuonna 2016) ja kaksi kertaa sen jälkeen (vuosina 2017 ja 2018).

Kasvinäytteiden analysointi osoitti, että kipsi ei ole haitannut kasvien magnesiumin- ja kaliuminottoa Savijoen valuma-alueella. (Kuva: Venla Ala-Harja)

Kasvinäytteiden analysointi osoitti, että Savijoen valuma-alueella kipsi ei ole haitannut kasvien magnesiumin- ja kaliuminottoa, jota on esitetty tapahtuvan, jos näitä kasveille välttämättömiä alkuaineita on maassa niukasti suhteessa muihin kationeihin. Kipsin sulfaatti voi vähentää kasvien seleeninottoa. Tätäkään vaikutusta ei havaittu, olkoonkin että alueella on hyvä kiinnittää seleeniin huomiota, sillä monessa kasvinäytteessä seleenin pitoisuus oli alle määritysrajan (0,02 mg/kg) riippumatta siitä oliko kipsiä levitetty vai ei.

Maaperänäytteet vahvistivat aiemman käsityksen, että kipsi ei vaikuta maan pH-arvoon tai fosforilukuun. Ne paljastivat myös järkeenkäyvän ilmiön liittyen kipsin käyttäytymiseen maassa. Kipsi koostuu kalsiumista ja rikistä, ja niinpä peltomaan ja kasvien rikkipitoisuus oli selvästi korkeampi kipsin levityksen jälkeen (kuvat 1 ja 2). Kalsiumissa ei tosin havaittu tilastollisesti merkitsevää nousua, sillä kalsiumia on maassa luontaisesti niin paljon, että kipsin tuoma lisä ei erottunut taustasta.

Yllätyksenä tuli kuitenkin se, että vain osa kipsin rikistä saatiin kiinni analyyseillä. Rikin lähtötaso peltomaassa ennen kipsinlevitystä vaihteli ”huononlaisesta” ”hyvään” eli välillä 6–17 mg/l. Kipsin mukana rikkiä levitettiin 622 kiloa hehtaarille. Olettaen, että peltolohko kynnetään ja että rikki sekoittuu tasaisesti ylimpään 20 sentin maakerrokseen, rikkipitoisuuden pitäisi nousta peräti 270 mg/l.

Kuva 1. Ensimmäisenä vuonna kipsinlevityksen jälkeen rikin pitoisuus pintamaassa oli noussut kipsikäsitellyillä lohkoilla, ei kuitenkaan niin paljon kuin laskennallisesti olisi pitänyt. Janat palkkien päissä kertovat pienimmän ja suurimman rikkipitoisuuden kipsikäsitellyillä peltolohkoilla (punainen) ja verrokkilohkoilla (sininen), palkit kuvaavat väliä, johon 90 % pitoisuuksista sijoittui ja viiva palkin keskellä mediaanipitoisuutta. (Kuva: Petri Ekholm / SYKE)

Kipsinlevityksen jälkeisenä keväänä rikkiä löytyi kuitenkin pintamaasta (0–20 cm) keskimäärin vain 39 % laskennallisesta määrästä. Tämä siitä huolimatta, että laskennassa otettiin huomioon Savijokeen huuhtoutunut rikki (9 % levitetystä kipsistä). Vaihtelu tutkittujen 11 kipsilohkon välillä oli suurta: pienimmillään rikkiä oli jäljellä vain 1 %, enimmillään 71 %. Vajaa kaksi vuotta kipsinlevityksen jälkeen pintamaassa oli jäljellä enää keskimäärin 17 % (vaihteluväli 0–50 %) lisätystä, ei-huuhtoutuneesta tai satoon siirtymättömästä rikistä. Minne rikki hävisi?

Rikillä esiintyy kaasumaisia muotoja, mutta rikin haihtuminen pintamaasta ilmaan on erittäin epätodennäköistä, sillä se vaatisi pitkään jatkuneen hapettomuuden. Siten vaihtoehdoksi jää rikin kulkeutuminen maassa alaspäin. Kolmelta kipsilohkolta oli tuloksia myös maakerroksista 20–40 cm ja 40–60 cm. Ja tosiaan, rikkipitoisuus oli noussut myös muokkauskerroksen alapuolella, ts. rikki oli heikosti maahan sitoutuvana aineena huuhtoutunut syvemmälle. Kaikki kadoksissa oleva rikki ei kuitenkaan löytynyt täältäkään. Kaivotutkimusten mukaan kipsiä ei myöskään ollut päätynyt pohjaveteen asti. Näyttää siis siltä, että kipsin rikkiä on kulkeutunut 60 cm syvemmälle, mutta ei kuitenkaan salaojiin asti ja sitä kautta Savijokeen. Mahdollista on myös, että viljavuusanalyysillä ei ole saatu esille kaikkea maassa olevaa rikkiä.

Kasveissa rikkiä oli ennen kipsiä keskimäärin 2,6 g/kg, ensimmäisenä kipsin jälkeisenä kasvukautena 5,1 g/kg ja toisena 4,9 g/kg (kuva 2). Kasveissa ei siis näkynyt vastaavaa rikkipitoisuuden alentumaa toisena vuotena kuin maanäytteissä, mikä myös voisi viitata rikin kulkeutumiseen syvemmälle maassa, pysyen silti kasvien juurten ulottuvilla.

Kuva 2. Kasvien rikkipitoisuus nousi kipsinlevityksen jälkeen ja pysyi aiempaa korkeampana myös toisena kipsinlevityksen jälkeisenä vuotena. (Kuva: Petri Ekholm / SYKE)

Rikin kohtalon selvittäminen on tärkeää, sillä se kertoo kipsin vaikutusmekanismista. Kun kipsi liukenee, maanesteen ionivahvuus (”suolapitoisuus”) kasvaa, mikä näkyi viljavuusanalyysissä maan johtoluvun nousuna: mitä enemmän maanesteessä on liuenneita ioneja, sitä paremmin se johtaa sähköä. Kun ionivahvuus kasvaa, mikroskooppisen pienet maahiukkaset muodostavat ryppäitä, jotka eivät enää ole niin herkkiä kulkeutumaan sade- ja lumensulamisveden mukana alapuolisiin vesistöihin.

Maa-aineksen kulkeutumisen pelloilta vesiin, siis eroosion, ajatellaan olevan maan pinnalla tapahtuva ilmiö. Jos kipsi on pintakerroksesta pitkälti huuhtoutunut, kuten tulokset viittaavat, niin eikö kipsin vaikutuksenkin tulisi olla hiipunut? Näin ei vedenlaatumittausten mukaan kuitenkaan näytä olevan. Ehkä pienikin määrä ”jäännöskipsiä” riittää pintamaan eroosiokestävyyden ylläpitämiseen. Tai ehkä suolavaikutuksen hävittyä maan mikromurut säilyvät, esimerkiksi maan mikrobien erittämien liimamaisten aineiden edistäminä. Emme näytä vielä täysin tuntevan kipsin vaikutusmekanismia.

Maa- ja kasvianalyysi toteutetaan vielä vuonna 2020, jolloin saataneen lisätietoa kadonneesta rikistä – ja lisää tutkittavaa.

Savimaaprofiili Liedossa

Kipsin vaikutusta SAVEn pilottialueen peltojen maaperään ja kasvustoon tutkitaan perusteellisesti. Pelloilta otettiin sekä maa- että  kasvustonäytteitä ennen kipsinlevitystä kesällä 2016 sekä kipsinlevityksen jälkeisenä keväänä ja kesänä 2017. Uusia näytteitä otetaan jälleen tänä vuonna. SAVE-hankkeen tulokset kipsin vaikutuksesta maaperään ja kasvustoon saadaan, kun molempien kipsinlevityksen jälkeisten vuosien analyysit ovat valmiita – viimeistään siis ensi syksynä.

Eläkkeellä oleva maaperä- ja ympäristötieteen professori Markku Yli-Halla kirjoitti noin vuosi sitten blogissa ennen kipsinlevitystä otettujen näytteiden analyysituloksista. Nyt hän on kirjoittanut kuvauksen Liedon alueen tyypillisestä savimaaprofiilista. Kansainvälisen käytännön mukaan tehty maalajin nimeäminen on tärkeää taustatietoa, kun maanäytteistä tehtyjä havaintoja raportoidaan.  

Suomen Maaperätieteiden Seura ry:n retkellä 25.8.2017 tutustuttiin tyypilliseen lounaissuomalaiseen savimaahan. Kohde, jonka korkeus on 30 m meren pinnan yläpuolella, sijaitsi SAVE-hankkeen toiminta-alueella 3 km Yliskulmalta Turun suuntaan Parmaharjun hyppyrimäelle vievän paikallistien varressa. Valtatie 10:ltä oli kohteelle matkaa 400 m. Savijoki oli kohteesta 150 m etäisyydellä noin 5 m alemmalla korkeustasolla.

Markku Yli-Halla esitteli Liedon savimaata Maaperäseuran retkeläisille elokuussa 2017.

Alueen maaperän valtamaalajeja ovat erilaiset savimaat (savespitoisuus yli 30 %), jotka ovat kauttaaltaan viljelykäytössä. Savipatjan paksuus on paikoitellen jopa 30 metriä. Peltoja ympäröivät kalliomaat (kallio lähempänä kuin 1 m maan pinnasta) sijaitsevat korkeammilla alueilla ja kasvavat metsää. Useita kalliomaa-alueita ympäröi kapea hieta- ja hiekkamoreenivyöhyke, joka monessa tapauksessa on otettu viljelyyn. Peltoa on raivattu niin pitkälle kun kivisyys on sallinut. Alueella on myös jonkin verran hienoa hietaa, joka sijaitsee Savijoen uoman välittömässä läheisyydessä. Savijoki on alueelle tyypillinen pieni joki, joka on uurtanut uomansa savipatjan läpi pohjamoreeniin saakka. Tästä ovat osoituksena joen pohjalla näkyvät kivet, jotka voivat olla läpimitaltaan jopa puolen metrin luokkaa. Jokiuoma on syntynyt aikojen kuluessa eroosion tuloksena, ja pellot viettävät jokeen joskus jyrkästikin.

Liedossa syysvehnäpeltoon oli kaivettu kaivinkoneella 165 cm:n syvyinen kuoppa. Rinne vietti etelään ja sen kaltevuus oli noin 3 %. Pohjaveden pinta oli tutkimushetkellä 164 cm:n syvyydessä. On todennäköistä, että korkeahko pohjaveden pinta tällä pellolla selittyy ainakin osaksi pohjoisen puoleiselta metsäiseltä kalliomaa-alueelta valuvilla vesillä. Lisäksi maa on kauttaaltaan savea, ja pohjamaan vedenjohtavuus on epäilemättä äärimmäisen pieni.

Maaprofiilista erotettiin morfologisin (ulkonäköön pohjautuvin) perustein horisontteja, joita luonnehditaan alla olevassa taulukossa. Maan värien koodaaminen on tehty kansainvälisesti käytetyn Munsellin värikarttakirjan avulla ja nimi annettu EU:n suositteleman WRB-järjestelmän mukaan.

Taulukko 1. Liedon savimaan morfologisia ominaisuuksia (Markku Yli-Halla)

Kuvassa 1. näkyy Liedon savimaa. Horisonttirajat  näkyvät  valkoisina pisteinä. Horisonttien  pedogeneesiä  kuvaavat lyhenteet on merkitty  kunkin horisontin kohdalle.

Kuva 1. Liedon savimaa (Kuva: Jaakko Mäkelä)

 

p = muokkauskerros (ploughing)

w = rapautumisen merkkejä (weathering)

g = usein vedellä kyllästynyt kerros

t = kokkareiden pinnoilla suspensiona ylempää liikkunutta savesta (illuvial clay)

 

 

Kuvassa 1. näkyvä Ap1-horisontti on nykyinen muokkauskerros. Peltoa on aikaisemmin muokattu syvemmältä, minkä seurauksena on nähtävissä Ap2-horisontti. Muokkauskerrosten alla on Bw-horisontti, jossa on jonkin verran rapautumisen merkkejä, mm. ruskeita rautasaostumia. Bg-horisontissa on runsaasti rautasaostumaa. Tämä horisontti on kaikkein sitkein ja vaikein kaivaa. Pintamaa tämän horisontin alarajaan saakka on yleisväriltään ruskea, mutta 50 cm:n alapuolella väri muuttuu harmaaksi, mikä osoittaa maan olevan pitkiä aikoja veden kyllästämää. Tästä syvyydestä alkaen maassa on prismamainen rakenne. Prismojen pinnoilla on nähtävissä ylemmistä horisonteista kulkeutunutta savesta (illuvial clay), joka on takertunut lohkopinnoille ja vanhojen juurikanavien seinämiin. Tämä saveksen kulkeutuminen Suomen maaperässä on ilmiö, joka on dokumentoitu vasta 10 vuotta sitten, mutta sitä näyttää esiintyvän käytännössä kaikilla savimaillamme. Saveksen kertymistä on eniten Btg2-horisontissa 77-110 cm:n syvyydessä. Btg3-horisontissa oli vanhojen juurikanavien ympärille saostuneita rautapillejä. Cg-horisontti erottui selvästi ylemmistä horisonteista rakenteensa ja harmaansinisen värinsä perusteella. Tämä horisontti oli pehmeää, massiivista savea, joka ei ilmeisesti ole koskaan kunnolla kuivanut, koska siinä ei ollut minkäänlaista rakennetta.

Tämän maan WRB-luokituksen mukainen nimi on seuraava:

Gleyic Luvic Eutric Stagnosols (clayic, drainic, protovertic)

Stagnosolsnimi kertoo siitä, että maan pintakerrokset ovat usein sadeveden kyllästämiä. Tämä ei ole ihme, koska Bw- ja Bg-horisonttien vedenjohtavuus on ilmeisen huono. Näissä horisonteissa kokkareiden sisäosissa on paljon ruostesaostumia, mikä tukee olettamusta, että maassa on stagnic properties.

Gleyic-attribuutti kertoo, että maassa on pohjaveden kyllästämiä kerroksia lähempänä kuin 75 cm päässä maan pinnasta; tässä maassa nämä kerrokset alkoivat 50 cm syvyydestä. Luvic-attribuutti ilmaisee saveksen kulkeutumista (clay illuviation) maaprofiilissa alaspäin ja tämän tuloksena syntyneitä pinnoitteita.

Maasta ei ole tehty analyysejä, mutta muista samantapaisista maista olevien tietojen perusteella voidaan olla varmoja siitä, että kationinvaihtokapasiteetista (pH 7) vähintään 50 % (todennäköisesti yli 80 %) on Ca:n, Mg:n, K:n ja Na:n täyttämää. Siksi voidaan käyttää attribuuttia eutric. Drainic-attribuutti ilmaisee sen, että maa on ojitettu. Vertic-attribuutti puolestaan ilmaisee maan halkeilutaipumuksen, joka johtuu korkeasta savespitoisuudesta ja siitä, että savimineraaleilla on paisumis- ja kutistumistaipumusta. Suomen ilmasto on kuitenkin liian kostea ja tämä maa liian märkä, jotta tämä kuivumisen aiheuttama kutistuminen ja maan halkeilu tulisivat kovin selvästi näkyviin. WRB-järjestelmän uusimpaan versioon onkin tällaisia maita varten lisätty attribuutti protovertic. Jos maasta on tarpeen käyttää lyhempää nimeä, se voisi olla Luvic Stagnosols.

Maaperä- ja ympäristötieteen professori Markku Yli-Halla

Kirjallisuus:  

IUSS Working Group WRB 2014. World reference base for soil resources. World Soil Resources Report 106. FAO, Rome.

Kymmenisen vuotta kipsinlevityksen jälkeen – Nummenpään viljelijät tyytyväisiä edelleen

Vedenlaadun mittausta kesäisessä Nummenpäässä.  Kuva: Petri Ekholm, SYKE

SAVE-hankkeen kipsinlevityksestä on kulunut nyt reilu vuosi. Uusimmassa viljelijäkyselyssä, jonka tuloksista kuulemme myöhemmin keväällä, kysyttiin mm. viljelijöiden kokemuksia ja havaintoja kipsin vaikutuksesta maaperään ja satoon. Runsas yhdeksän vuotta sitten Nummenpäässä Uudellamaalla toteutettiin pienemmän mittaluokan TraP-kipsinlevityshanke (TraP-projekti 2007–2014), jonka hyvät tulokset pohjustivat myös SAVE-hankkeen syntymistä .  Nummenpään tutkimuksessa arvioitiin kipsin fosforikuormitusta vähentävän vaikutuksen kestävän viitisen vuotta. SAVEssa meitä kiinnostaa luonnontieteellisten tulosten lisäksi se, miten viljelijät ovat vastaanottaneet kipsimenetelmän ja millaisia kokemuksia ja havaintoja heille kertyy pilotin aikana. Kipsin vaikutuksen maaperään on arvioitu kestävän useita vuosia. Koska Nummenpään kipsinlevityksestä on kulunut melkein vuosikymmen, halusimme kysyä hankkeeseen osallistuneilta viljelijöiltä, näkyykö kipsin vaikutus heidän pelloillaan vielä tänäkin päivänä. Lisäksi meitä kiinnosti millaiset tunnelmat kipsimenetelmästä oli jäänyt – ottaisivatko viljelijät kipsiä pelloilleen uudelleenkin.

Uusmaalainen talvi – pakkaslunta ja sulavesia vuorotellen. Kuva : Petri Ekholm, SYKE

Otimme siis yhteyttä Nummenpään viljelijöihin ja saimme vastaukset lyhyeen kyselyyn yhteensä seitsemältä viljelijältä. Kahdeksas hankkeeseen aikoinaan osallistunut viljelijä oli jäänyt eläkkeelle ja lopettanut viljelyn muutama vuosi aiemmin. Kaikilla vastaajilla vain osa pelloista oli kipsitetty, mikä mahdollisti vertailun kipsittömiin peltoihin. Kaikilla vastaajilla oli myös pitkä viljelykokemus.  Kyselyssä kysyttiin kipsin mahdollista nykypäivän vaikutusta maaperään erilaisilla pelloilla sekä vaikutusta eri viljelykasvien satomääriin ja -laatuun.

Suurin osa kyntö- ja kevytmuokattujen peltojen viljelijöistä koki, että maan mururakenne ja muokattavuus oli muuttunut paremmaksi kipsinlevityksen jälkeen ja että kipsin vaikutus on nähtävissä vielä tänäkin päivänä. Myös suorakylvettyjä peltoja viljelevistä yksi kolmesta koki maaperän parantuneen niin, että se näkyy edelleen. Negatiivistä vaikutusta pelloissa ei kukaan viljelijöistä ollut havainnut.

Osa viljelijöistä myös koki, että satomäärät kipsitetyillä pelloilla ovat vielä nykyäänkin paremmat kuin kipsittömillä pelloilla. Yksittäiset viljelijät olivat huomanneet parannusta myös sadon laadussa kaalin ja kevätviljan kohdalla. ”Ei ainakaan huonontanut” oli myös pari kertaa kuultu kommentti. Kielteistä sanottavaa kipsin vaikutuksesta sadon laatuun tai määrään ei ollut kenelläkään. Kipsi ei ole myöskään aiheuttanut pellon tiivistymistä, eikä se ole vaikuttanut sadon orastukseen haitallisesti tai jättänyt laikkuja kasvustoon.

Yli puolella vastaajista kipsi ei ole vaikuttanut lannoitukseen millään lailla, mutta pari viljelijää kertoi vähentäneensä lannoitusta tai kalkitusta kipsinlevityksen jälkeen näihin päiviin asti. Muokkaustapoihin kipsillä ei ole ollut vaikutusta.

Kun kysyimme mahdollisia muita kipsin myönteisiä tai kielteisiä vaikutuksia, lopputulemaksi jäi ettei ainakaan kielteisiä vaikutuksia ole ollut. Joku mainitsi myönteisenä sen, että kipsitys lisäsi maaperän rikkipitoisuutta. Yksi viljelijä korosti, että kipsinlevityksessä tulisi olla ”hyvät koneet”, sillä kipsi oli aikoinaan kostunut ennen levitystä ja ollut kokkareista. Levitys oli silti onnistunut hyvin. Sään vaikutus tuli myös esille: kipsiä on helpompi levittää ”hyvällä kelillä”.

Kysyimme myös, ottaisivatko viljelijät vielä uudelleen kipsiä pelloilleen, jos se olisi esimerkiksi osa ympäristökorvausjärjestelmää. Vastausten esittely SAVEn hankepalaverissa aiheutti hyväntuulisia hörähdyksiä: kaikki vastanneet viljelijät sanoivat kyllä.  Lisäksi viljelijä, joka ei ollut halunnut suoraan valita kyllä/ei -vaihtoehdoista, kommentoi: ”Ei mahdoton asia, riippuisi kustannuksista ja levitysolosuhteista”. TraP-hankkeesta ja kipsikokeilusta oli siis jäänyt hyviä kokemuksia viljelijöille. Suurimmalle osalle oli myös jäänyt mielikuva, että kipsi  vähentää fosforihuuhtoumia. Miltei kaikki  viljelijät myös kokivat, että viljelymenetelmillä ja maataloudella on vaikutusta vesistöjen ja Itämeren tilaan.

Päällimmäisenä asiana kyselystä jäi se, että viljelijät eivät ole havainneet mitään kielteisiä vaikutuksia pelloillaan vajaa vuosikymmen kipsinlevityksen jälkeen. Hyvin sujunut pilotti ja kipsinlevityksen jälkeisten vuosien myönteiset vaikutukset peltoihin ovat saattavat vaikuttaa vastauksiin kipsin mahdollisesta nykypäivän vaikutuksesta. Kyselyn perusteella vaikuttaa kuitenkin mahdolliselta, että kipsillä on muutamaa vuotta pidempäänkin positiivista vaikutusta maaperän mururakenteeseen ja muokkautuvuuteen.

Nummenpään mittaukset loppuivat TraP-hankkeen päättymisen myötä keväällä 2013. SAVE-hankkeen kylkiäisenä alueelle asennettiin yksi mittari viime vuoden helmikuussa. Toistaiseksi saaduissa tuloksissa on ollut niin paljon hajontaa, että emme vielä voi sanoa, onko kipsillä edelleen vaikutusta fosforihuuhtoumiin. Kipsivaikutuksen kestosta toivotaan saatavan lisätietoa myös Savijoelta: tämän kevään aikana haemme rahoitusta Savijoen vedenlaadun ja peltojen maaperän seurantaan vuoden 2018 jälkeen.

Venla Ala-Harja
Helsingin yliopisto

Lisätietoja kipsin vaikutuksista ja siihen liittyvistä tutkimuksista SAVEn materiaalit sivulla.

 

 

 

Kasvustonäytteenottoa

Kun keväällä otettiin ensimmäiset maanäytteet pilottialueelta kipsinlevityksen jälkeiseltä ajalta, nyt kesäkuun lopulla oli vuorossa kasvustonäytteenottokierros. Ennen kipsinlevitystä kasvustonäytteet otettiin viime vuonna näihin samoihin aikoihin.

Kasvustonäytteitä kävivät tutkimusalueelta keräämässä Riikka Mäkilä ja Juho Moisio ProAgriasta. Silmämääräisesti arvioiden kasvuston kunto oli normaali sekä kipsi- että vertailulohkoilla. Näytteet analysoidaan Viljavuuspalvelussa. Syksyllä pystymme sitten kertomaan kipsinlevityksen mahdollisista vaikutuksista sadon laatuun. Alla muutama kuva näytteenottokierrokselta.

Juho Moisio ProAgriasta kerää tutkimuksen vertailualueelta kaurakasvustosta osanäytteitä. (Kuva: Riikka Mäkilä / SAVE)
Viime syksynä kipsikäsitelty kevätvehnälohko. (Kuva: Riikka Mäkilä / SAVE)
Kevätvehnäkasvustoa toiselta kipsinlevityslohkolta. (Kuva: Riikka Mäkilä / SAVE)

 Kiitos Riikalle ja Juholle näytteenotosta!

Kipsin vaikutus maaperään ja kasvustoon

SAVE-hankkeessa pyritään selvittämään kipsinlevityksen vaikutuksia mahdollisimman laajasti. Aikaisemmin olemme kertoneet, kuinka vaikutuksia tarkkaillaan vesieliöissä, mm. vuollejokisimpukassa. Tällä kertaa aiheena on kipsin vaikutus peltojen maaperään ja kasvustoon. Maaperä- ja ympäristötieteen professori Markku Yli-Halla perehdyttää meidät aiheeseen ja analysoi samalla ennen kipsinlevitystä otettujen näytteiden tuloksia.

Kesällä 2016 ennen kipsin levitystä kerättiin maanäytteitä Savijoen valuma-alueen peltojen muokkauskerroksesta ja jankosta (pohjamaasta). Näytteenoton tarkoitus oli saada käsitys alueen viljelymaiden ominaisuuksista ennen kipsin levitystä, jotta kipsikäsittelyn aiheuttamia muutoksia voidaan aikanaan luotettavasti arvioida. Samasta syystä jokaiselta seurantalohkolta kerättiin myös kasvinäyte.

Kipsin vaikutusta peltomaahan tarkkaillaan SAVE-hankkeessa. Kuva: Janne Artell / NutriTrade

Näytteitä otettiin sekä pilotti- että vertailualueelta ja niin kipsikäsiteltäviltä kuin -käsittelemättömiltä peltolohkoilta. Maanäytteistä tehtiin viljavuusanalyysin perustutkimus. Siinä määritettiin maalaji ja multavuus aistinvaraisesti, pH(H2O) ja maan helppoliukoisten suolojen pitoisuutta kuvaava johtoluku sekä muutamien helppoliukoisten kasvinravinteiden (Ca, Mg, K, P, S) pitoisuudet. Kationipitoisuuksien perusteella laskettiin efektiivinen kationinvaihtokapasiteetti. Lisäksi määritettiin vesiuuttoisen fosforin pitoisuus.

SAVE-hankkeen näkökulmasta ovat oleellisia etenkin kalsium-, magnesium- fosfori- ja rikkipitoisuudet sekä maan johtoluku ja jossain määrin pH. Kipsin mukana maaperään tulee runsaasti kalsiumia ja rikkiä ja näiden pitoisuuksien voidaan olettaa kipsikäsittelyn myötä kasvavan. Mg-pitoisuus todennäköisesti puolestaan vähenee, koska Ca syrjäyttää kationinvaihtopaikoilta Mg-ioneja, jotka voivat huuhtoutua syvemmälle. Sulfaatin liukeneminen näkyy todennäköisesti myös jonkin verran kohoavina johtoluvun arvoina.

Kipsin vaikutus pellon helppoliukoisen fosforin pitoisuuteen on keskeinen seurantakohde. Maaperäkemian lainalaisuuksien pohjalta voi päätellä, että kipsin fosforikuormitusta pienentävä vaikutus ei pohjaudu varsinaisesti helppoliukoisen fosforin pitoisuuden alenemiseen vaan maan suolapitoisuuden ja kalsiumpitoisuuden kasvun aiheuttamaan fosforin liukenemisen vähenemiseen ja samoista tekijöistä johtuvaan pienempään eroosioon. Kun maan mururakenne vahvistuu suolapitoisuuden kasvun myötä, valumaveteen päätyy vähemmän maapartikkeleita ja siten myös niihin sitoutunutta fosforia. Tällöin liikkeelle lähtevän ja Savijokeen päätyvän fosforin määrä pienenee. Viljelijöitä kiinnostaa epäilemättä suuresti se, vaikuttaako kipsikäsittely kasvien fosforin saantiin ja lannoitustarpeeseen. Aikaisemmin kasvihuoneessa tehdyn kokeen perusteella kipsilisäys ei heikennä kasvien fosforin saantia eikä siis lisää fosforilannoituksen tarvetta.

Kipsi on neutraalisuola, jonka lisäys maahan ei periaatteessa aiheuta muutoksia maan pH:ssa. Kipsi tosin sisältää kalsiumia, ja monet luulevat virheellisesti sen nostavan maan pH:ta, kun kerran sitä on kalkitusaineissakin. Maan pH:n kohoaminen perustuu kuitenkin kalkitusaineen anioniin, joka kipsissä on sulfaatti; se ei sido eikä luovuta happamuutta eikä näin ollen vaikuta maan happamuuteen. Kipsin liukeneminen nostaa hieman maan suolapitoisuutta, mikä saattaa hieman (joitain pH-yksikön kymmenyksiä) alentaa viljavuusanalyysissä mitattavaa pH(H2O)-arvoa.

Näytteiden maalajijakauma oli alueelle tyypillinen: 70 % edusti savimaita ja 30 % karkeita kivennäismaita. SAVE-aineiston karkeat kivennäismaat olivat kaikilta kemiallisilta ominaisuuksiltaan hyvin Liedon ja Tarvasjoen alueen karkeiden kivennäismaiden kaltaisia. Savimaat poikkesivat alueen savimaista hieman enemmän kuin karkeat maat. Suurin ero oli maan P-luvussa, joka SAVE-aineiston savimaissa edusti selvästi yhtä viljavuusluokkaa korkeampaa tasoa.

Kasvinäytteistä määritettiin yhteensä 12 eri aineen kokonaispitoisuudet (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, B ja Se). Kerätyistä kasvinäytteistä 22 oli viljoja, 7 heinää ja lisäksi mukana oli yksi näyte hernekasvustosta. Kasvinäytteille vertailukohdan löytäminen on hieman hankalampaa, koska SAVE-hankkeen näytteet edustivat kohtalaisen nuoressa kasvuvaiheessa olevaa kasvustoa, ja kirjallisuudesta löytyy pääasiassa tuleentunutta viljakasvustoa (jyvät, oljet) koskevaa tietoa. Merkille pantavaa on se, että valtaosa näytteiden seleenipitoisuuksista oli alle määritysrajan (<0,02 mg/kg) ja vain harvassa tapauksessa kasvien seleenipitoisuus oli tasolla, johon lannoituksella pyritään (0,1 mg/kg).  Vaikuttaakin siltä, että Savijoen valuma-alueen viljelijät käyttävät huomattavassa määrin lannoitteita, jotka eivät sisällä seleeniä. Toivottavasti he ottavat asian huomioon kotieläintensä ruokinnassa.

Kipsikäsittelyn jälkeisen näytteenoton aika on nyt käsillä. Maaperänäytteet otetaan nyt keväällä ennen toukotöiden alkua ja kasvustonäytteet alkukesästä. Näiden tulosten analysoinnin jälkeen voimme jo arvioida, kuinka kipsi vaikuttaa maaperässä ja peltojen kasvustossa.

Professori Markku Yli-Halla
Maaperä- ja ympäristötiede
Helsingin yliopisto