Älä tule hyvä kakku, tule paha kakku!

Erikoistutkija Jouni Lehtoranta Suomen ympäristökeskuksesta (SYKE) kertoo yhteistyössä Turun ammattikorkeakoulun kanssa tehdyistä kokeista, joissa selvitettiin sulfaatin vaikutusta luonnonvesien rehevöitymiseen. Mereen päätyessään sulfaatista ei ole haittaa, sillä merivedessä sitä on luontaisesti paljon. SAVE-hankkeen arviossa kipsinlevitykselle soveltuvasta peltoalasta on rajattu pois ne valuma-alueet, joilta vedet laskevat järviin.  Jouni kertoo blogissa miksi järvet eivät kestä sulfaattia.

Edellisessä blogijutussani esittelin sulfaatinpelkistyksen vaikutusta raudan ja fosforin kiertoon ja sen aiheuttamaa rehevöitymistä. Kipsinlevitys pelloille voi nostaa sulfaattipitoisuutta vesistöissä. Voisiko siitä aiheutua haittaa järvissä?

Sulfaatin vaikutusten tutkiminen itse vesistöissä on hankalaa, sillä sulfaatti vaikuttaa pohjasedimentin prosesseihin. Haitallisten vaikutusten havaitseminen saattaa kestää vuosia. Kätevämpää on tehdä laboratoriokoe, jossa olosuhteita voidaan säädellä tarkemmin kuin tottelemattomassa luonnonympäristössä.

”Selvittääksemme miten mikrobit kohottavat sedimenttikakkujamme, tapoimme pöpöt reilulla annoksella formaliinia osasta näytteitä. Kakkujen kypsennyslämpötila oli 20 astetta.” (Kuva: Wolf Helmhardt von Hohberg 1695, Frau beim Brotbacken, Deutsche Fotothek, Wikipedia Commons.)

Labrakokkailua Turussa

Kokkailimme siis yhdessä Turun ammattikorkeakoulun insinööriopiskelijoiden ja heidän opettajiensa johdolla sedimenttikakkuja. Kakkureseptimme työkeittiöstä arkeen ja juhlaan oli seuraava: Raaka-aineina jään alta nostettu Turun Maarian altaan pohjasedimentin pintakerros ja saman altaan vesi. Sitten sulfaattia kolmessa eri tasossa: ei lisäystä, 30 mg/L ja 100 mg/L. Halusimme myös virkistää joidenkin koeyksiköiden mikrobitoimintaa sokerilla aivan kuin pullataikinassa. Tosin tavoitteena oli saada bakteerien – ei hiivojen – toiminta piristymään. Lisäksi tylytimme happea hengittäviä mikrobeja poistamalla vedestä happea typpikuplituksella. Selvittääksemme miten mikrobit kohottavat sedimenttikakkujamme, tapoimme pöpöt reilulla annoksella formaliinia osasta näytteitä. Kakkujen kypsennyslämpötila oli 20 astetta ja niitä pidettiin pimeässä. Vaatimaton lämpötila piirakanpaistoon, mutta varsin korkea meikäläisissä vesistöissä.

Tavoitteena rautasulfidikakkuja

Tavoitteenamme oli pilata Maarian altaan hyvä sedimentti sulfaattilisäyksillä. Sedimentissä saattaa olla niukasti ravintoa sulfaatin pelkistäjille ja siksi ruuan riittävyys varmistettiin  sokerilla. Hapettomissa oloissa rautaoksidikakkujen pitäisi pelkistyä ja vapauttaa rautaa ja fosforia veteen. Sulfaattikäsittelyissä tulisi leipoutua rautasulfidikakkuja ja samalla fosforia pitäisi irrota veteen reippaasti. Tavoitteena oli siis havaita, miten hengitykseen käytettävä sulfaatti ja pöpöille tarjottu tuore ravinto aiheuttaisivat eroja monessa eri tekijässä käsittelyjen välillä. Oletuksena oli myös, että kaikissa formaliinilla tapetuissa kakuissa olisi taas varsin hiljaista.

Kokkailuissamme aistinvarainen kolmen tuomarin makustelu ei riittäisi. Nyt oli saatava numeroita veden sulfaatin, sulfidien, liukoisen raudan, fosfaattifosforin, kokonaisfosforin, mangaanin, nitraatin, ammoniumin pitoisuuksista ja vielä pH:n muutoksista niin leivonnan alussa kuin lopussakin. Tähtäimessä oli, että ymmärryksemme sulfaatin ja sokerin vaikutuksesta sedimentistä veteen irtoaviin useisiin aineisiin lisääntyisi.

Sedimenttikakkumme kuukausien kypsyttelyjen jälkeen

Vedessä lilluneet kakkumme muuttuivat mustiksi, joka viittaa rautasulfidien muodostukseen. Hapettomissa oloissa sedimentistä irtosi runsaasti fosforia veteen. Pitoisuus nousi jopa korkeammaksi kuin puhdistamattomassa jätevedessä. Sokeri lisäsi vain hieman fosforin vapautumista, mutta rautaa ja ammoniumia irtosi veteen sokerin avulla reippaasti enemmän. Tapetuissa näytteissä fosforipitoisuus pysyi lähtötasolla tai jopa laski, eli ilman mikrobitoimintaa fosforin vapautumista ei tapahtunut hapettomissakaan oloissa.

Mitä opimme sedimenttikakkujen mittailusta?

Jos Maarian altaan sulfaattipitoisuus nousee, niin fosforin vapautuminen sedimentistä kasvaa. Kokeissa sulfaatin lisäys vähensi myös vedessä tavatun raudan määrää, mutta melko vähän. Sulfaatti siis lisäsi fosforin vapautumista ja samalla vähensi fosforia sitovan raudan määrää vedessä luultavasti rautasulfidien muodostuksen vuoksi. Huonoon suuntaan mentiin, mutta tuliko niin pahaa kakkua kuin toivottiin? No ei tullut. Raudan väheneminen ja fosforin vapautuminen oli varsin maltillista. Sokerinkin lisääminen kasvatti fosforin vapautumista vain hillitysti sedimentistä veteen. Miksi näin kävi?

Vaikuttaa siltä, että Maarian altaan pöpöille itse sedimentissä on jerkkua takana kuin Pitkämäen heitossa aikoinansa. Sedimentissä on siis riittävästi polttoainetta käynnistämään fosforia vapauttavat hapettomat hengitysprosessit aina sulfaatinpelkistykseen saakka. Hapettomissa oloissa altaan sedimentistä irtoaa runsaasti fosforia ilman sulfaatti- tai sokerilisäystäkin. Tosin sokerin lisääminen saattoi kohentaa mikrobien kasvua ja sedimentistä irronnut ekstra fosfori voisi löytyä myös sokerista hyötyneistä pöpöistä.

Merkittävin tekijä vähäisen pahan kakun syntymiseen oli luultavasti se, että altaan sedimentissä on paljon rautaoksideja. Niiden pelkistyminen nosti raudan määrän vedessä hyvin korkeaksi. Kokeessa lisäämämme sulfaatti hengitettiin pois lähes täysin ja silti syntyneet sulfidit riittivät sitomaan vain osan raudasta. Sulfaattimäärämme eivät juuri vaarantaneet raudan kykyä sitoa fosforia, kun olot muuttuivat takaisin hapellisiksi. Mutta olisiko pahaa sulfidikakkua syntynyt enemmän, jos olisimme lisänneet sulfaattia kokeen edetessä? Jaa-a, kyllä näin olisi voinut tapahtua. Luonnossahan sulfaatti ei ehtyisi parissa kuukaudessa kuten kokeessamme.

Lopputulos

Kokeemme toi konkreettisesti esiin sen, että useita ravinteiden kiertoon osallistuvia aineita on otettava huomioon kun tarkastellaan kuormituksen vähentämistoimenpiteiden vaikutuksia vastaanottavassa vesistössä.

Voiko kipsiä nyt laittaa pellolle, vaikka sulfaattipitoisuus nousee vesistöissä? Tulostemme perusteella varsin reipaskaan sulfaattipitoisuuden kasvu Maarian altaassa ei lisää huimasti fosforin vapautumista, kun olosuhteet muuttuvat hapettomiksi. Kokeemme kesti kuitenkin vain pari kuukautta. Huolestuneisuus kohdistuu tässä siihen, että sulfaatti pääsi kokeessa ehtymään  melko nopeasti. Jos sulfaattia tulisi pidempiaikaisesti valuma-alueelta vesistöön  ja mikrobit pelkistäisivät sitä sedimentissä, niin se saattaisi johtaa rautasulfidien muodostukseen ja heikentyneeseen fosforin sidontakykyyn. Pahaa kakkua saattaisi syntyä, vaikkakin hitaasti. Suosittelisin siis edelleen kipsin käyttöä vain sellaisilla valuma-alueilla, joista vedet päätyvät jokien kautta suoraan mereen.

Blogini epilogi

Antaisin reseptille vaikeusasteen 4/5. Toteutus ja valmistuminen syövät resursseja ja aikaa. Kakkukäsittelyissä muodostuva bukee (tolkuton mädän kananmunan haju) karsii amatöörit ja vain karastuneimmat ajautuvat ammattilaisuuteen. Hapettomien olojen kokkailukokemuksista MP:tä ja näkiksii voi kysäistä opiskelijoilta, jotka opettajiensa kanssa toteuttivat kokeen näytteenotosta aina viimeisiin mittauksiin. Sedimenttikokeet vaativat suuren työmäärän. Näytteiden käsittely hapettomuudessa ei myöskään ole ihan yksinkertaista. Näistä vaativista töistä Turun AMK selvisi erinomaisesti ja siitä iso kiitos.

Jouni Lehtoranta
Erikoistutkija, Suomen ympäristökeskus (SYKE)

Vesistönäytelmässä sulfaatin rikille lankeaa pahiksen rooli

Erikoistutkija Jouni Lehtoranta Suomen ympäristökeskuksesta (SYKE) kuvaa kirjoituksessaan, miten sulfaatti saattaa aiheuttaa rehevöitymistä vesistöissä. Tätä näytelmää lukiessa maallikollekin avautuu, mistä prosessissa on kyse. Sulfaatin vaikutusta luonnonvesien rehevöitymiseen on tutkittu yhteistyössä Turun AMK:n kanssa. Tuloksia kokeesta saadaan syksyllä. Keväällä julkaistussa arviossa kipsinlevitykselle soveltuvasta peltoalasta  on rajattu pois ne valuma-alueet, joilta vedet laskevat järviin.

Olemme Ekholmin Petrin kanssa pohdiskelleet sulfaatin aiheuttamaa rehevöitymistä vuosituhannen alusta saakka. Fosforin kierron kannalta ”mikrobiologinen dissimilatorinen sulfaatin pelkistys” on yksi merkittävimmistä tapahtumista vesistöissä. Työkaverit hauskuuttavat itseään tuon termin käytöllä ja hymyilyttäähän se minuakin. Totuus kuitenkin on, että prosessi tunnetaan heikosti meikäläisissä vesistöissä. Eikä tuo nyt luille kaluttu termi ole, jos se tulee tässä ensimmäistä kertaa esille. Ryhdytään nyt linkittämään sulfaattia fosforiin ja rehevöitymiseen teatterinäytelmän keinoin.

Kytkennät aineiden välillä ovat tietysti monimutkaisia, kuten näiden luonnon prosessien kanssa tahtoo olla. Mutta niin ovat monet näytelmätkin pää- ja sivuhenkilöineen. Hylätään kuitenkin aluksi termit ja rakennetaan sulfaatista näytelmä, jossa aineiden sitoutumiset ja vapautumiset esitetään kihlautumisina, eroina ja uusien kumppanien löytämisinä ja pysyvinä liittoina. Pääosissa ovat happi, rauta, rikki, fosfori ja eloperäinen hiili. Eri näytösten ohjaajat – tilannetajuiset mikrobit – osallistuvat näytökseen vain, kun tietyt reunaehdot näyttämöllä toteutuvat. Näyttelijät ja ohjaajat lavalle ja vedetään esirippu ylös!

Henkilöhahmoja Shakespearen näytelmistä. (Kuva 1800-luvun puolivälistä, tekijä tuntematon. Lähde: Wikipedia Commons)

Ensimmäinen näytös: Rauta-fosforiliitossa kaikki hyvin

Näyttämöllä on ruuhkaksi asti happea ja muutamia eloperäisen aineksen edustajia. Mikrobeista lavalla ovat vain ne, jotka tykkäävät hapesta, jota on runsaasti ympärillä. Timmissä kunnossa olevat hapettuneet ruosteraudat kihlautuvat nopeasti fosforin kanssa ja fosfori ei ole kiinnostunut suuresti levien flirttailusta. Levät eivät siis lisäänny liikaa. Sulfaatit pyörivät näyttämöllä kykenemättöminä turmelemaan raudan ja fosforin solmimia liittoja. Oi onnea!

Toinen näytös: Parisuhde alkaa rakoilla

Näyttämölle saapuu lisää eloperäistä ainesta ja mikrobit poistavat näyttämöltä lopulta kaikki happikaverit. Hapettomaksi muuttuneella näyttämöllä hyväkuntoisesta raudasta kiinnostunut mikrobiporukka heräilee ja alkaa murjoa eloperäisen aineksen avulla rautaa heikompaan kuntoon. Tällaisesta raudasta fosfori ei enää ole kiinnostunut ja fosfori purkaa kihlauksensa raudan kanssa. Voimaton rauta ja siitä eronnut fosfori eivät kykene sitoutumaan toisiinsa lukuun ottamatta muutamaa hassua susiparia, ja rauta ja fosfori vaeltelevat turhautuneina näyttämöllä. Osa fosforista tympääntyy touhuun täysin ja menee kimppaan levien kanssa.

Kolmas näytös: Parisuhdeongelma kärjistyy – rauta löytää uuden kumppanin

Lavalle tunkeutuu vielä lisää eloperäistä ainesta, sopivaa rautaa ei enää ole taottavaksi ja nyt eloperäisen aineksesta kiinnostuvat sulfaattia hyödyntävät mikrobit. Nämä veijarit tuottavat sulfaatista ärhäkkään, raudasta erittäin kiinnostuneen sulfidin. Sulfidi häiriköi, vie raudan vihille, ja pariskunnasta tulee musta, näyttämörakenteisiin hautautuva kiinteä rautasulfidi. Raudan seurustelu sulfidin kanssa on armoton fosforille, sillä rauta, liittouduttuaan sulfidin kanssa, ei kykene fosforiliittoon. Fosfori poistuu kolmantena pyöränä ja on vapaa seurustelemaan muiden kumppanien kanssa. Näytelmän loppu on onneton – fosfori kihlautuu sinilevän kanssa.

Näytelmän opetus

Esityksen ”hyvis” on rauta, tarkemmin ilmaistuna rautaoksidi, joka sitoo fosforin pois levien ulottuvilta. Sulfaatti ja sen sisältämä rikki on taas ”pahis”, joka sitoo raudan, jolloin se ei kykene sitomaan fosforia. Ensimmäinen näytös osoittaa, että sulfaatti on alussa ”harmiton”, mutta tilanne muuttuu ikäväksi, kun mikrobit voivat hyödyntää sitä suurin määrin, jolloin sulfaatin sisältämä rikki aiheuttaa riesaa sen estäessä raudan ja fosforin keskinäisen sitoutumisen.

Jokien sulfaattikuormalla on vähäinen vaikutus meren sulfaattipitoisuuteen, koska merissä sulfaattia on jo luontaisesti. (Kuva: Samuli Puroila)

Sulfaatin lisääminen vesistöön voi siis lisätä rehevöitymistä. Jos systeemi on niukkatuottoinen, niin sulfaatti tuskin aiheuttaa rehevöitymisongelmia – pohjasedimentissä kun ei ole käyttökelpoista eloperäistä ainesta sulfaatinpelkistäjille ja sulfaatti kulkee vesistön läpi. Toisin on rehevien vesistöjen kanssa, joihin sulfaatin lisääminen voi olla hyvinkin haitallista. Sulfaatin pelkistäjäbakteerit viihtyvät hyvin lämpimissä ja rehevissä ympäristöissä. Maataloutemme kuormittamat matalat ja hyvin, koko vesitilavuudeltaan lämpenevät järvemme eivät todellakaan tarvitse sulfaattilisäystä. Tämän vuoksi emme suosittele sulfaattipitoisuutta vesistössä nostavaa kipsin käyttöä kuin sellaisilla valuma-alueilla, joilta vesi kulkeutuu suoraan tai jokia pitkin mereen. Merivedessä sulfaattia riittää luontaisesti eikä lisäsulfaatti juuri vaikuta sulfaattipitoisuuteen.

Tätä aihetta ”sulfaatti ja rehevöityminen” ovat käsitelleet muutkin tasokkaissa tieteellisissä artikkeleissa, ja vieläpä reilusti ennen minua ja Petriä. Mutta jos meidän tekemä heavy-osasto kiinnostaa, niin kannattaa käydä vilkaisemassa artikkeleita AMBIO-tiedelehdestä tai kotimaisesta Vesitalous-sarjasta.

J.K. Tavoittelin tässä Shakespearen loistokkuutta, mutta tällaista pienen pitäjän kömpelöä kesäteatteria tuli. Menköön helteisen heinäkuun piikkiin.

Jouni Lehtoranta
Erikoistutkija, Suomen ympäristökeskus (SYKE)

Sulfaattiselvityskoe – matka kohti tuntematonta

Sulfaatin vaikutuksesta luonnonvesien rehevöitymiseen kaivataan kipeästi lisää tietoa, sillä esimerkiksi SAVE-hankkeen kipsikäsittelyt ja Paattistenjoen ferrisulfaattikäsittelyt ovat lisänneet jokiveden sulfaattipitoisuuksia. Tuorein tutkimus toteutettiin Turun ammattikorkeakoulun laboratoriossa neljännen vuoden opiskelijoiden yhteistyönä. Tutkimuskohteena oli Turussa sijaitsevan Maarian tekoaltaan vesi ja pohjasedimentti. Syyskuun 2017 aikana järjestetyssä hankkeen infotilaisuudessa loksahtivat opiskelijaryhmän suut auki: mihin tässä oikein ollaan ryhtymässä?

Vuodenajan armoilla

Tammikuun toisena sunnuntaina oli hieman erikoista herätä aikaisin aamulla. Aamu poikkesi paljon tavanomaisesta päivärytmistä, mutta niin sen oli tällä kertaa tarkoituskin. Oli aika valmistautua näytteenottoon, joka polkaisi käyntiin muutaman päivän mittaisen työurakan alkavalle viikolle. Kolmen hengen tiimi kokoontui kampukselle tarkistamaan kaikki laitteet ja apuvälineet mitä näytteenotossa tarvitaan. Kaikki vaikutti olevan kunnossa, joten ei muuta kuin tavarat auton kyytiin ja matkaan kohti Maarian allasta.

Paikan päällä aamuaurinko alkoi jo pilkottaa taivaanrannasta antaen valoa alkavalle työpäivälle. Maarian altaalla kerättiin talteen ravinnepitoista sedimenttiä ja altaan vettä laboratoriokoetta varten. Ennen näytteenottoa oli tarvetta kuitenkin pienelle lihasvoimalle. Syynä oli noin 30 sentin jääkerros, minkä läpi oli päästävä monessa eri kohdassa. Urakkaa hankaloitti myös se tosiasia, että talviaikaan päivänvalolla on rajansa. Oli toimittava ripeästi ja koordinoidusti, jotta saimme näytteenoton onnistumaan. Lyhyet evästauotkin oli pakko porrastaa, jotta valoisa aika ei loppuisi kesken.

Haasteet olivat kuitenkin tällä kertaa vain pomppuja matkassa ja näytteenotto onnistui lähelle toivottua lopputulosta. Alkuillan pimeydessä pakkasimme tavarat ja näytteet autoon ja palasimme takaisin kampukselle. Näytteet saivat vielä odottaa maanantaiaamuun ennen kuin päätyivät varsinaiseen käsittelyyn.

Tutkimus pullotetuilla koeyksiköillä

Koevedestä valmistettiin lasipulloihin yhteensä 14 erilaista koeyksikköä, joista suurimmassa osassa oli lisäksi Maarian altaan pohjasedimenttiä. Eroavaisuuksia lähdettiin toteuttamaan lisäämällä tiettyihin pulloihin sulfaattia ja hiilen lähteenä toimivaa sokeria. Koeyksiköiden kokoamisen jälkeen odotettiin noin vuorokausi ennen ensimmäisiä määrityksiä. Kokeessa tarkoitus oli siis tarkastella lähtö- ja lopputilanteita.

Pintasedimenttiä Maarian altaasta (kuva: Eemeli Huhta/Turun AMK) sekä näytteenottoa koeyksiköistä (kuva: Emilia Suvanto/Turun AMK)

Mikäli suunnitelmissa oli päästä päivän päätteeksi nauttimaan raikkaasta tammikuisesta säästä, olivat ensimmäiset näytteet eri mieltä. Työpäivät venyivät jopa 16 tuntisiksi. Valmistautuminen oli tärkeässä roolissa. Pitkästä päivästä huolen piti etenkin näytteiden suodattaminen, koska koevesi oli hyvin sameaa. Analyysit valmistuivat kuitenkin suhteellisen nopeasti, koska työtaakka oli jaettu. Tittelin aikaa vievimmästä määrityksestä vei ylivoimaisesti sulfaatti, sillä yksi mittaus kesti 20 minuuttia.

Tutkimuksessa haluttiin asettaa myös mikrobitoiminta yhdeksi muuttujaksi. Ensimmäisen näytteenoton jälkeen tietyistä koeyksiköistä pyrittiin formaliinin voimalla poistamaan mikrobiologian vaikutus. Näiden toimenpiteiden jälkeen haluttiin pulloista poistaa lisäksi happi typpikaasulla. Tämän jälkeen pullot korkitettiin ja laitettiin pimeään tekeytymään kahdeksi kuukaudeksija odottamaan lopputilanteen tarkastamista. Tämän kahden kuukauden aikana ainoa toimenpide oli pullojen viikoittainen sekoittaminen.

Suodattaminen tuotti harmaita hiuksia (kuva: Emilia Suvanto/Turun AMK). Koeyksiköiden typettämistä (kuva: Emilia Suvanto/Turun AMK)

Hapettomat olosuhteet uutuutena

Sulfaatin vaikutus fosforin vapautumiseen tulee esille vasta hapettomissa oloissa. Näin ollen toisessa näytteenotossa tämä oli huomioitava myös laboratoriomääritysten osalta. Fokuksessa olikin se, miten laboratoriossa voidaan toimia hapettomasti. Tarvitsisiko koko laboratorio typettää hapettomaksi ja pitäisikö tutkijat varustaa avaruuspuvuin?

Näin järeisiin toimenpiteisiin ei sentään ollut tarvetta ryhtyä. Hapettomien olosuhteiden toimintamalliin lähdettiin hakemaan ratkaisua polyeteeniteltoista. Kyseessä on suljettu systeemi, jonka sisällä olevia olosuhteita, eli tässä tapauksessa happipitoisuutta, on mahdollista kontrolloida. Näiden telttojen rakenteissa oli kiinni neljä hansikasparia, kaksi kummallakin puolen, joten telttailemaan pääsi parhaimmillaan kaksi tutkijaa yhtäaikaisesti. Koeyksiköiden tavoin myös teltoista poistettiin happi typpikaasulla.

Typpiteltoilla työskentelyä (Kuva: Pasi Laaksonen/Turun AMK)

Typpiteltoilla työskentely laittoi käsiltään näppärimmänkin tutkijan kyvyt koetukselle, sillä teltan kömpelöillä hansikkailla jo pelkkä tavaroiden siirtely vaati erityistä tarkkuutta. Etenkin kaikkein pienimmät astiat olivat herkkiä kaatumiselle. Pelisilmä olikin valttia kahden tutkijan työskennellessä samassa teltassa samanaikaisesti. Tutkimuksen aikana haasteilta ei vältytty, esimerkiksi eräs näytepullo kaatui epäonnekkaasti useamman tutkijan toimesta. Kokonaisuus huomioiden telttahaasteesta selviydyttiin kuitenkin ansiokkaasti.

Loppu hyvin, kaikki hyvin

Toisesta määrityskierroksesta povattiin typpitelttojen takia erityisen haasteellista. Etenkin näytteiden suodattamista odotettiin kammoksuen. Suodattaminen sujui kuitenkin melko kivuttomasti, sillä koeyksiköiden vesi oli ensimmäiseen näytteenottoon verrattuna huomattavasti kirkkaampaa. Sen sijaan näytteiden määritykset veivät aikaa suodattamisenkin edestä, joten pitkiltä työpäiviltä ei tälläkään kertaa vältytty. Loppujen lopuksi hanketta voi pitää onnistuneena, erityisesti typpiteltoilla suoritettavat toimenpiteet oli melko hyvin suunniteltu etukäteen ja mutkia matkassa oli vain harvakseltaan.

Seikkailun tuloksista kerrotaan viimeistään loppukesästä. Kokeesta kerrottiin ensimmäisen kerran lyhyesti SAVEn blogissa helmikuussa.

 

Turun ammattikorkeakoulun opiskelijat:

Pasi Laaksonen (prosessi- ja materiaalitekniikka)

Jenni Ståhlberg (bio- ja elintarviketekniikka, sv. laboratoriotekniikka)

Tapio Kankaanpää (energia- ja ympäristötekniikka)

Voiko sulfaatti vapauttaa joen pohjalta fosforia?

Kipsin levitys Savijoen valuma-alueen pelloille lisäsi jokiveden sulfaattipitoisuutta. Sulfaatin vaikutusta joessa on selvitetty ja selvitetään edelleenkin monin tavoin (mm. vaikutusta kalakantaan, vuollejokisimpukoihin ja niiden toukkiin sekä taimenen mätimuniin).

Turun ammattikorkeakoulussa aloitettiin tammikuussa koe, jossa tutkitaan, voiko kipsin tai paikalliseen Paattistenjokeen lisätyn kemikaalin sulfaatti vapauttaa joen suvantosedimenteistä fosforia.

Koepulloihin lisätään hapen poistamiseksi typpeä, jolloin hapettomat olot saavutetaan nopeammin. Pulloihin lisätään myös orgaanista hiiltä mikrobien ravinnoksi. Kuvat: Emilia Suvanto, Turun ammattikorkeakoulu

Paattistenjoen varrelle sijaitsevasta Maarian altaasta kerättyä pohja-ainesta pidetään hapettomissa oloissa eri sulfaattipitoisuuksissa kahden kuukauden ajan. Pulloihin lisätään eri määriä orgaanista hiiltä mikrobien ravinnoksi. Kokeet tehdään yhteistyössä toisen Raki-hankkeen kanssa (Fosforin saostaminen virtavedestä – pilottihanke Paattistenjoella) ja ne rahoittaa Maa- ja vesitekniikan tuki ry.

”Inkubointi aloitettu”. Kuvat: Emilia Suvanto, Turun ammattikorkeakoulu

Koe auttaa arvioimaan sulfaatin vaikutusta myös Savijoen pohjasedimenttiin ja mahdolliseen fosforin vapautumiseen joen pohjasta.

Tuloksista kerromme myöhemmin!

Vaikuttaako kipsinlevitys kaloihin?

Suomen ympäristökeskuksen tutkijat Jarno Turunen ja Janne Markkula sähkökalastamassa Savijoella, Liedonperällä lokakuussa 2017.  Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

SYKEn tutkijat suorittivat lokakuussa sähkökalastuksia Savijoen valuma-alueella. Sähkökalastuksilla pyrittiin saamaan selville onko kipsin levityksellä merkittäviä vaikutuksia Savijoen kalastoon. Kipsin levitys lisää veden sulfaattipitoisuuksia, millä voi korkeina pitoisuuksina olla haitallisia vaikutuksia makean veden kaloihin ja niiden lisääntymiseen. Toisaalta kipsin levitys vähentää maahiukkasten huuhtoutumista vesistöön, mikä voi parantaa virtakutuisten kalojen, kuten taimenen, lisääntymismenestystä. Maahiukkaset voivat joen pohjalle laskeutuessaan tukkia sorapohjia veden virtaukselta, mikä haittaa sorapohjille kutevien kalojen, kuten taimenen, mätimunien kehitystä.

Sähköä Savijokeen

Kalaston selvitys tehtiin sähkökalastamalla, joka on standardimenetelmä virtavesien kalastoselvityksissä ja -tutkimuksissa. Menetelmässä sähkökalastuslaitteella luodaan kalastettavalle alueelle tasavirtasähkökenttä, mikä tainnuttaa kalat (katso menetelmästä kertova video). Sähkökalastajan apuna on haavitsija, joka nappaa taintuneet kalat haaviin. Haavista kalat kipataan vesiastiaan ja pyynnin päätyttyä lajit tunnistetaan ja mitataan. Sähkökalastetun alueen pinta-ala mitataan ja saaliista lasketaan kalalajien tiheyksiä suhteessa alaan. Sähkökalastus ei vaurioita kaloja, joten ne voidaan laskea mittausten ja kalojen virkoamisen jälkeen takaisin veteen.

Sähkökalastaja ja haavitsija yhteistyössä syksyisessä jokimaisemassa. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Sähkökalastus toteutettiin neljässä paikassa Savijoen valuma-alueella: Rynkön koskella, Yliskulman koskialueella, Yliskulman purossa ja Mittapadon koskella. Paikoista oli, Mittapatoa lukuun ottamatta, aiempaa sähkökalastusaineistoa ajalta ennen kipsin levitystä, johon saalista voitiin verrata. Mittapadon paikka taas sijaitsee kipsin levitysalueen ulkopuolella, joten myös sen saalista käytettiin kipsin vaikutusten arviointiin.

Kivisimppu, kivennuoliainen… taimen!

Kuten usein käy, päätti luonto taas tehdä tutkijoiden työstä hankalaa. Koetta edeltävän viikon sateet olivat nostaneet Savijoen veden tulvakorkeuteen eikä ennuste luvannut helpotusta seuraavillekaan viikoille. Homma päätettiin toteuttaa sovittuna päivänä.

Tulvalle eväänsä lotkauttamatta sähkökalastajat tekivät homman suunnitellusti. Saalistakin saatiin, jos kohta suuret maineteot jäivät uupumaan. Saalis koostui valtaosin kivisimpuista ja kivennuoliaisista, joita saatiin kymmenittäin. Taimenista saatiin kaksi havaintoa. Toinen, 31 cm pitkä vonkale, eksyi haaviin Rynkön koskesta ja toinen, 8 cm poikanen, Yliskulman purosta. Verrattuna aiempiin kalastuksiin, olivat kivennuoliaisten tiheydet samalla tasolla ja kivisimppujen jonkin verran korkeammalla syksyllä 2017.

Haaviin saatu kivennuoliainen tutkijan kädellä. Virrottuaan kalat pääsivät takaisin jokeen. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Savijoessa aiemmin tavattuja särkikaloja, kuten turpaa ja töröä, ei saatu saaliiksi. Näiden kalojen tiheydet ovat olleet pieniä myös aiemmissa kalastuksissa, joten puuttuminen saaliista selittynee satunnaisuudella ja hankalilla olosuhteilla. Lisäksi vesi oli jo jäähtynyt noin 8 asteiseksi, joten kyseiset lajit ovat voineet poistua koskialueilta talvehtimaan miedommin virtaaviin suvantoihin.  Kyseisiä lajeja ei myöskään saatu vertailualueena toimivalta Mittapadon paikalta, josta saaliiksi tuli vain kivennuoliaisia.

Taimenten tiheyksissä huomio kiinnittyy Yliskulman puron pieneen tiheyteen (0.6 yksilöä / 100 m2) verrattuna vuoden 2012 tiheyksiin (17 yksilöä / 100 m2). Ero selittynee osittain istutuksilla, joita ei keväällä 2017 tehty. Puroon on istutettu viimeksi 2016 keväällä taimenen vastakuoriutuneita poikasia (8000 kpl), joita ei siis tällä kertaa saatu saaliiksi. Ongelmallista arvion kannalta on myös se, ettei kalastuksia ole tehty viime vuosina. Taimenen poikasten luontainen kuolevuus vaihtelee runsaasti vuosien välillä. Saaliiksi saatu 8 cm poikanen edustaa todennäköisesti 2017 keväällä luonnonkudusta kuoriutuneita poikasia. Sen löytyminen on hyvä merkki ja osoittaa, että purossa on myös luontaista lisääntymistä.

Aiempien syksyjen ja syksyn 2017 (lihavoitu) sähkökalastusten tulokset. Luvut ovat ilmoitettu yksilömäärinä per 100 m2 kalastettua alaa. Tiheydet on laskettu yhden pyynnin perusteella.

Mitä tuloksista voisi päätellä?

Tulva varmasti heikensi kalojen pyydystettävyyttä. Vaikuttaa kuitenkin siltä, että kipsin levitys ei ole vaikuttanut ainakaan haitallisesti tyypillisiin koskikaloihin kuten kivisimppuihin ja kivennuoliaisiin. Taimenen osalta eroa ei Savijoen pääuomassa ole, ja ero Yliskulman puron taimentiheyksissä selittynee istutuksilla, tulvalla ja luontaisilla tekijöillä. Savijoen sulfaattipitoisuudet ovat olleet kipsin levityksen jälkeen keskimäärin 30 mg/l ja hetkellisesti reilu 400 mg/l. Yli 400 mg/l pitoisuuksilla on havaittu lieviä negatiivisia vaikutuksia lohikalojen mädin kehitykseen pitkän ajan altistuskokeissa, mutta hetkellisinä piikkeinä vaikutusta tuskin on.

Vertailualueen saaliin, aiempien sähkökalastusten ja matalien sulfaattipitoisuuksien valossa kipsin levitys ei näytä vaikuttavan merkittävästi kaloihin tai muihinkaan vesieliöihin. Toki vahvemman näytön saamiseksi sähkökalastusseurantaa olisi hyvä jatkaa ensi vuonna. Hankkeessa on lisäksi käynnissä taimenen mädin haudontakoe, joka antaa tärkeää lisävalaistusta kipsin levityksen vaikutuksista taimeneen. SAVE-hanke ei siis ole etsimässä pelastuskeinoja Saaristomerelle virtavesiluonnon kustannuksella.

Jarno Turunen, SYKE

 

San Pellegrino ja Savijoki – sulfaatit vesissämme

Petri Ekholm
Erikoistutkija
Suomen ympäristökeskus

Kipsin sisältämä sulfaatti on herättänyt huolta: voisiko sillä olla haitallisia vaikutuksia vesiympäristössä? SAVE-hankkeessa näitä mahdollisia vaikutuksia tutkitaan, mutta mitä sulfaatti oikeastaan on ja mistä se on peräisin?

Sulfaatti (SO4) on yleinen osanen elollisessa ja elottomassa luonnossa. Kasveille se on tärkeä rikin lähde, ja valtameriveden sulfaattipitoisuus – peräti 2700 mg/l – kertoo kallioperän rikkipitoisten mineraalien rapautumisesta. Kemiallisesti määriteltynä sulfaatti on rikkihapon (H2SO4) anioni, ja ihmisen aiheuttamat sulfaattipäästöt liittyvätkin pitkälti rikkihapon käyttöön. Rikkihappo on maailman käytetyin kemiallinen yhdiste ja sen maakohtaisesta kulutuksesta voidaan tehdä päätelmiä jopa bruttokansantuotteesta. Rikkihappoa tarvitaan mitä moninaisimmissa teollisuuden prosesseissa lannoitteiden valmistuksesta ja sellun keitosta aina pigmenttien valmistukseen.

Eri vesien sulfaattipitoisuuksia. Kuva aukeaa suuremmaksi klikkaamalla.

Ympäristötutkimus kiinnostui sulfaatista 1970-luvulla, kun maailma havahtui happosateiden aiheuttamiin ongelmiin. Hiilivoimaloiden piiput tupruttivat ilmaan rikkidioksidia, joka muuntui ilmakehässä rikkihapoksi. Nykyisin voimalaitosten savukaasuja pestään ja happamoittavat rikkipäästöt ovat vähentyneet. Myös tässä prosessissa syntyy kipsiä. Sulfaatin toi uudelleen otsikoihin Talvivaaran kaivoksen natriumsulfaattipäästöt, jotka suolasivat lähijärviä. Esimerkiksi kaivoksen alapuolisen Kivijärven pohjanläheisessä vedessä sulfaattipitoisuus on ollut yli 6000 mg/l.

Talvivaaran tapauksessa sulfaatin alkuperä oli prosessissa käytetty rikkihappo ja osin myös malmin sisältämät rikkiyhdisteet (sulfidit). Järviä ja metsiä tuhonneen happaman laskeuman rikki taas oli peräisin kivihiilestä – jos kivihiili on aikoinaan muodostunut meriveteen kontaktissa olleesta turpeesta, sen rikkipitoisuus on erityisen korkea. Mutta mistä Siilinjärven kipsin sulfaatti on peräisin?

Kuten Samuli kertoi tehdasvierailua kuvaavassa blogissaan, kipsiä eli kalsiumsulfaattidihydraattia syntyy sivutuotteena, kun apatiittimineraalia liuotetaan rikkihapolla. Näin saadaan fosforihappoa lannoiteteollisuuden tarpeeseen. Tätä nykyä Siilijärvellä käytettävä rikkihappo valmistetaan kotimaisessa öljynjalostuksessa syntyvästä rikistä. Viime syksynä Savijoen pelloille levitettiin siis sulfaattia, joka on erotettu fossiilisista polttoaineista, ts. muinaisten levien ja bakteerien merivedestä sitomaa rikkiä, sekä Siilinjärven kalliosta peräisin olevaa kalsiumia.

Happamoitumistutkimuksissa sulfaattia pidettiin niin sanottuna läpivirtausionina, joka ei reagoi vesiympäristössä, mutta kuvastaa kylläkin happaman laskeuman suuruutta. Sulfaatilla on kuitenkin tärkeä rooli esimerkiksi pohjasedimenttien ainekierroissa. Itämeressä suurellakaan sulfaattikuormituksella ei ole merkitystä, sillä murtovesi sisältää luonnostaan runsaasti sulfaattia, esimerkiksi Helsingin edustalla 500 mg/l. Järviin sulfaattia ei kuitenkaan pidä päästää, ainakaan suuria määriä, sillä se voi vähentää niiden pohja-aineksen kykyä sitoa fosforia ja siten pahentaa rehevöitymiskierrettä.

Sulfaattia kuitenkin päätyy järviin monista eri lähteistä. Koska sulfaattikuormitusta seurataan vain muutamien kuormittajien osalta, voimme esittää pelkästään karkean arvion kuormituksen suuruudesta. Sen mukaan Suomen kolme suurinta järvien sulfaattikuormittajaa ovat maatalous, ilmalaskeuma ja selluteollisuus. Ilmalaskeuman kontolle on tässä laskettu metsistä tuleva sulfaattihuuhtouma, mikä kuvastanee aikojen saatossa maaperäämme sitoutunutta ilmaperäistä, siis energian tuotannosta peräisin olevaa sulfaattia.

Rautasulfaatteja käytetään niin raaka- kuin jäteveden puhdistuksessa. Esimerkiksi HSYn (Helsingin seudun ympäristöpalvelut) puhdistusprosessissa Päijänteen veden noin 8 mg/l sulfaattipitoisuus nousee yli kaksinkertaiseksi. Tämä ei kuitenkaan vielä riitä muuttamaan pääkaupunkiseudun kraanavettä kulinaariseksi kivennäisvedeksi, sillä esimerkiksi San Pellegrinon mineraalivedessä sulfaattipitoisuus on yhtä korkea kuin Suomenlahdessa. Makutestien mukaan sulfaatti parantaa veden makua. Optimaalinen pitoisuus kalsiumsulfaatille on 270 mg/l. Maailman terveysjärjestö WHO ei ole asettanut juomaveden sulfaatille ylärajaa, joskin laksatiivisia vaikutuksia saattaa ilmetä pitoisuuden ylittäessä 1000 mg/l, makuongelmia seuralaiskationista riippuen jo aiemmin – natriumsulfaatti ei ole yhtä hyvää kuin kalsiumsulfaatti.

Savijoessa toistaiseksi havaitut sulfaattipitoisuudet ovat suhteellisen pieniä: kipsin levityksen jälkeen keskiarvo on ollut vain runsas 30 mg/l. Hetkellisesti pitoisuus on toki ollut yli 400 mg/l. Blogeissamme on jo aiemmin käsitelty tämän pitoisuustason vaikutusta – tai paremminkin vaikuttamattomuutta – vuollejokisimpukkaan. SAVE-hankkeessa on tarkoitus vielä selvittää, miten sulfaatti vaikuttaa kaloihin ja päällysleviin. Lisäksi tutkitaan, voisiko jokien pohjalta vapautua fosforia sulfaattipitoisuuden nousun vuoksi samalla tavalla kuin järvissä. Korkeina pitoisuuksina sulfaatista on haittaa rakenteille, esim. teräkselle ja betonille, mutta tällaisia vaikutuksia ei ole odotettavissa Savijoen maltillisissa sulfaattipitoisuuksissa.

Kipsistä ei haittaa vuollejokisimpukoiden toukille

SAVE-hankkeessa on juuri valmistunut tutkimus kipsin vaikutuksista vuollejokisimpukoiden toukille. Tutkimuksissa selvitettiin veteen liuenneen kipsin vaikutuksia toukkien selviytymiseen eri kipsipitoisuuksilla. Testatuilla pitoisuuksilla kipsistä ei havaittu olevan haittaa toukkien elinkyvylle. Tutkimukseen osallistuneet vuollejokisimpukat ovat jo palanneet kotiinsa Perniönjokeen. Tutkija Johanna Salmelin (SYKE) kertoo tutkimuksen toteutuksesta ja tuloksista tarkemmin.

SAVE-hankkeen kipsinlevityksen pilottialueella Savijoella on luonnonsuojelulain ja EU:n luontodirektiivin nojalla rauhoitetun, uhanalaisen vuollejokisimpukan (Unio crassus) elinalueita, joten tutkimme kipsin eli kalsiumsulfaatin vaikutuksia lajiin. Sulfaatti, kuten muutkin ionit, voi haitata makean veden eläinten ionisäätelyä. Viime syksynä tutkittiin täysikasvuisten vuollejokisimpukoiden vasteita kipsille, ja nyt vuorossa oli selvittää vaikutuksia simpukoiden glokidium-toukille.

Vuollejokisimpukan glokidium-toukat ovat mikroskooppisen pieniä, noin 0,2 millimetrin mittaisia. Niillä on kaksi kuorenpuoliskoa, jotka ne kykenevät sulkemaan, mutta muuten ne eivät pysty aktiivisesti liikkumaan. Kuorenpuoliskoissa on pienet väkäset, joiden avulla ne tarttuvat kiinni kohtaamaansa kalaan pakollista loisintavaihetta varten. Simpukoiden elinkierto on monivaiheinen. Emosimpukat hedelmöittyvät, kun ympäröivästä vedestä kulkeutuu koiraan sukusoluja hengitysputken kautta simpukan sisään, minkä jälkeen alkiot alkavat kasvaa emosimpukan kiduslehdillä. Yhden simpukan sisällä voi kehittyä tuhansia toukkia. Emosimpukka vapauttaa toukat veteen, missä ne selviävät hengissä vain muutamia päiviä. Tänä aikana niiden täytyy kohdata kalaisäntä, jonka kiduksilla tai evillä ne loisivat muutaman viikon ajan kehittyäkseen muodonmuutoksen läpikäytyään elinkierron seuraavaan vaiheeseen, nuoruusvaiheeseen. Tämän jälkeen nuoret simpukat irrottautuvat kalasta ja jatkavat kasvuaan joen pohjaan kaivautuneena.

 

Hydrobiologi Rami Laaksonen kerää vuollejokisimpukoita Perniönjoesta. Simpukoiden kuorta varovasti raottamalla varmistettiin, että simpukan ulommilla kiduslehdillä oli kehittymässä toukkia. (Kuvat: Johanna Salmelin)

Tutkimusta varten aikuisia, toukkia kantavia vuollejokisimpukoita kerättiin toukokuussa Perniönjoesta. Työhön oli Varsinais-Suomen ELY-keskuksen myöntämä poikkeuslupa. Simpukat kuljetettiin laboratorioon ilmastetussa jokivedessä kylmälaukuissa.

Kipsin vaikutuksia vuollejokisimpukan glokidium-toukkiin tutkittiin lyhytaikaisilla, yhden ja kahden vuorokauden mittaisilla altistuskokeilla. Koevetenä käytettiin Savijoen Mittapadolta kerättyä vettä, johon lisättiin kipsiä vastaamaan kuutta eri sulfaattipitoisuutta: 30, 60, 120, 240, 480 ja 960 mg/l. Lisäksi mukana oli kaksi kontrollikäsittelyä: Savijoen vesi ilman lisättyä kipsiä, ja Perniönjoen vesi simpukoiden keruupaikalta.

Altistettavat toukat kerättiin vuollejokisimpukoiden ylläpitoastioista, joten emosimpukat säilyivät vahingoittumattomina. Toukkien elinkyky altistuksen päätyttyä mitattiin niiden kyvyllä sulkea kuorensa vasteena ruokasuolakäsittelylle. Elävät, elinkykyiset toukat olivat aukinaisia, ja reagoivat nopeasti viereen pipetoituun suolavesitippaan sulkemalla kuorensa. Toukat, jotka eivät reagoineet suolaveteen, laskettiin kuolleiksi, kuten myös altistuksen aikana ennen suolavesikäsittelyä sulkeutuneet yksilöt.

Elinkykyisten toukkien osuus oli keskimäärin yhtä suuri kaikissa käsittelyissä sekä yhden että kahden vuorokauden altistuksen jälkeen. Kokeiden pitoisuudet valittiin siten, että mukaan saatiin kipsipilotin aikainen keskimääräinen sulfaattipitoisuus (30 mg/l) ja maksimipitoisuus (470 mg/l) Savijoessa. Näistä pitoisuuksista ei tämän tutkimuksen perusteella ole haittaa vuollejokisimpukan toukkien elinkyvylle.

   

Vuollejokisimpukan eläviä, kuorenpuoliskot auki olevia glokidium-toukkia (kuva 1) ja kuorensa sulkeneita toukkia (kuvat 2 ja 3). (Kuvat: Johanna Salmelin)

Kesäkuun alussa simpukat palautettiin takaisin Perniönjokeen. (Kuvat: Johanna Salmelin)

Tutkijat: Johanna Salmelin (SYKE), Matti Leppänen (SYKE), Heikki Hämäläinen (Jyväskylän yliopisto)

Mitä vuollejokisimpukat tuumaavat kipsistä?

Lokakuussa SYKEn ja Jyväskylän yliopiston tutkijat aloittivat tutkimukset vuollejokisimpukoilla ja kävivät hakemassa laboratoriokokeisiin vettä Savijoesta sekä simpukoita Perniönjoen runsaasta populaatiosta. Tavoitteena oli selvittää vaikuttaako jokiveteen liukeneva kipsi simpukoiden käyttäytymiseen ja menestymiseen Savijoessa ja muissa tulevien kipsinlevitysalueiden joissa. Kokeiden ensimmäisistä tuloksista kertoo jälleen SYKEn erikoitutkija Matti Leppänen.

Laboratoriokokeissa mitattiin simpukoiden reaktioita neljään eri kipsikäsittelyyn; Savijoen kontrollivedessä ei ollut kipsiä ja kolmessa käsittelyssä jokiveteen lisättiin kipsiä siten, että mitatuiksi sulfaattipitoisuuksiksi muodostui 40 mg, 200 mg ja 1100 mg litraa kohti. Alin sulfaattipitoisuus kuvaa mahdollista keskimääräistä pitoisuutta joessa, 200 mg teoreettista maksimipitoisuutta ja ylin pitoisuus on lähellä kipsin liukoisuusrajaa.

Simpukoiden reaktioita arvioitiin kolmella tavalla neljän päivän kipsialtistuksessa: 1) Mittasimme aktiivisuutta (prosenttia kokonaisajasta) altistuskammion sähkökentässä tapahtuvien muutosten avulla. Yhteismitallinen aktiivisuus koostuu jalan liikkeistä, kuoren aukeamisesta ja veden suodattamisesta/kidushengittämisestä. 2) Laskimme aktiivisuustyyppejä silmämääräisesti kahdesti päivässä. 3) Seurasimme ruokintalevän kulutusta sameus- ja levätiheysmittausten avulla.

Simpukat käyttävät jalkaa liikkumiseen, suodattavat sisäänhengitysaukon kautta saadun orgaanisen materiaalin ravinnoksi ja poistavat ylimääräisen materiaalin poistoaukon kautta. Nämä käyttäytymisen muodot näkyvät selvästi videossa, joka on kuvattu kokeen yhden altistusastian yksilöstä (kuvaaja: Johanna Salmelin).

Neljän päivän altistuksen jälkeen simpukat olivat sähkökenttämittauksissa vähemmän aktiivisia kahdessa suuremmassa kipsipitoisuudessa vaikkakin näitä aktiivisuusjaksoja oli suhteellisen vähän (5-18 % kokonaismittausajasta, kuva 1). Neljän päivän altistuksen aikana tutkijan havainnoimissa aktiivisuusmuodoissa kuoren liike, veden suodatus ja kaikkien muotojen summa eivät osoittaneet eroa käsittelyjen välillä. Sen sijaan simpukat pitivät jalkaa ulkona kahdessa suurimmassa pitoisuudessa useammin kuin kontrollissa. Koska simpukoita ruokittiin levällä, pystyimme myös arvioimaan niiden suodatusaktiivisuutta levän poistumisen avulla. Neljän päivän altistuksen jälkeen ruokalevää poistui vedestä kuitenkin sama määrä kaikissa käsittelyissä.

Kuvaaja-simpukoiden-aktiivisuudesta
Kuva 1: Aikuisten vuollejokisimpukoiden keskimääräinen aktiivisuus (suodattaminen sekä jalan ja kuoren liikkeet) sähkökenttämittauksissa laskennallisilla sulfaattipitoisuuksilla 0, 30, 200 ja 1200 mg/l (nämä eroavat hieman mitatuista pitoisuuksista). Pylväät osoittavat kunkin altistusryhmän (n=8) keskimääräisen aktiivisuuden (% mittausajasta) sekä keskivirheen.

Laboratoriotulokset voivat näyttää ristiriitaisilta. Altistushetki oli kuitenkin erilainen ja jalan passiivinen ulkona pitäminen ei välttämättä näy sähkökentän muutoksissa. Näiden suhteellisen lyhytaikaisten altistusten valossa voimme sanoa, että ainoastaan suurimmat kipsi- ja siten sulfaattipitoisuudet vaikuttavat simpukan käyttäytymiseen. Jalan käyttö voi kieliä liikkumishalukkuudesta pakoreaktiona epämiellyttävässä ympäristössä, jota kokonaisaktiivisuuden väheneminen (ml. suodatus ja kuoren liikkeet) tukee. Näin suuriksi (200 mg ja 1100 mg/L) tuskin kuitenkaan kohoavat Savijoessa tai muissa kipsinlevitysalueiden virtavesissä.

Simpukoiden käyttäytymistä mitattiin myös itse Savijoessa lokakuun alussa. Kokonaisaktiivisuus oli viileässä vedessä varsin vähäistä ja vain 7 – 8 % mittausajasta havaittiin liikkeeseen liittyvä signaali. Simpukkayksilöt jätettiin Savijokeen sumppuihin, ja palasimme kuukauden päästä mittaamaan samojen yksilöiden käyttäytymistä. Toiveena oli saada sateita, jotka huuhtoisivat kipsiä jokeen ja muuttaisivat olosuhteita.

Simpukat palautetaan Perniönjokeen
Kuva 2: Kokeeseen osallistuneet simpukat pääsevät takaisin Perniönjokeen tutkija Johanna Salmelinin avustamana. Kuva: Matti Leppänen

Syksy oli kuitenkin kuiva, ja vedenlaatu pysyi samanlaisena kummallakin paikalla. Vain lämpötila oli laskenut yhden plusasteen tuntumaan. Yläjuoksun verrokkialueella kylmä vesi ja olematon virtaus olivat johtaneet simpukoiden mielestä talviolosuhteisiin ja siten inaktiivisuuteen. Parmanharjulla virtaus piti vielä simpukoita yhtä aktiivisena kuin kuukautta aikaisemmin. Mittausten päätyttyä marraskuussa palautimme sekä sumputetut että laboratoriossa vierailleet yksilöt kotijokeensa Perniön Yliskylän kirkon viereen.

Erikoistutkija Matti Leppänen
Suomen ympäristökeskus (SYKE)
Laboratoriokeskus / Ekotoksikologia ja riskinarviointi

Tutkijat: Matti Leppänen (SYKE), Heikki Hämäläinen (JY), Krista Rantamo (JY), Johanna Salmelin (JY)

Sähköä jokeen: vuollejokisimpukoiden käyttäytymisen mittaamista

Kipsipilotin ensisijaisena tavoitteena on selvittää kipsinlevityksen käytännön toteutukseen liittyviä haasteita sekä varmistaa toimenpiteen vaikutus peltojen ravinnehuuhtoumaan. Kuitenkin myös toimenpiteen muut potentiaaliset vaikutukset on selvitettävä ennen kuin kipsitys voidaan laajentaa koko Etelä-Suomeen. Erittäin olennainen selvitettävä asia on kipsin vaikutus vesieliöstöön. Tästä kertoo SYKEn erikoitutkija Matti Leppänen.

Lounais-Suomen joille on tyypillistä savisameus, joka aiheutuu, kun pelloilta huuhtoutuu hiukkasia vettä samentamaan. Samalla liikkuu myös ravinteita, joita SAVE-projekti yrittää torjua. Entäpä kipsi? Kalsiumsulfaatti on hyvin vesiliukoista ja huolimatta sitoutumisesta maahan, jonkin verran voi päätyä myös jokeen. Sen enempää kalsiumia kuin sulfaattiakaan ei voi pitää perinteisinä haitallisina aineina, ovathan ne tavallisia kaikissa luonnon vesissä. Suuret määrät voivat kuitenkin häiritä eliöiden ionitasapainoa ja sen säätelyä. Sen takia on hyvä tutkia, olisiko kipsillä merkitystä Savijoen eliöille oletetuissa huuhtoumamäärissä tai äärimmäisissä pitoisuuksissa.

Altistuskammioita ja simpukoita Savijoella
Altistuskammiot simpukoineen Savijoen yläjuoksun vähäisessä vesimäärässä. Kammioiden lisäksi käyttäytymismittausten laitteistoon kuuluvat auton akku, invertteri, tietokone ja mittalaite. Kuva: Matti Leppänen

Savijoessa, kuten joissakin muissakin länsirannikon joissa, on uhanalaista vuollejokisimpukkaa. Sen hyvinvoinnista olemme tietysti kiinnostuneita. Hiljaista elämää viettävien simpukoiden reaktioita ulkopuolisiin tekijöihin on hankala tutkia. Onneksi käytettävissämme on laitteisto, jolla voidaan, sähkökentässä tapahtuvien muutosten avulla, tulkita simpukan liikkeitä koekammiossa. Kuoren avaaminen, jalan liikkeet ja veden siivilöinti havaitaan herkällä laitteella, ja käyttäytymisessä mitattuja muutoksia voidaan verrata altistusolosuhteisiin. Näin ainakin teoriassa – kokeet näyttävät toimiiko tämä käytännössä.

Vuollejokisimpukoita
Savijoesta pilottialueen alapuolelta löytyneitä vuollejokisimpukoita. Kuva: Rami Laaksonen

Kokeiden toteuttamiseksi olemme saaneet apua simpukka-asiantuntija Rami Laaksoselta, joka poimi meille Perniönjoesta Varsinais-Suomen ELY-keskuksen poikkeusluvalla 60 vuollejokisimpukkaa. Joen runsaasta populaatiosta voidaan ”lainata” koeyksilöitä kokeisiimme ja palauttaa ne keräyspaikkaan palvelun jälkeen. Kokeita varten veimme 40 simpukkaa Jyväskylään SYKEn ekotoksikologian laboratorioon, jossa niiden käyttäytymistä mitataan erilaisilla kipsialtistuksen tasoilla Savijoen vedessä. Mittasimme myös simpukoiden reaktioita jo hakumatkalla Perniönjoessa ja Savijoessa kahdella paikalla taustatiedoksi. Lisäksi jätimme Savijoella simpukoita sumppuihin sekä kipsinlevitys- että yläjuoksun verrokkialueelle. Näillä simpukoilla toistamme kuukauden kuluttua mittaukset ja vertaamme vasteita vedenlaatutietoihin.

Savijoki - vedenkeruu
Savijoen norosta kerättiin liki 400 litraa vettä laboratoriokokeisiin. Kuvassa tutkijat Johanna Salmelin ja Krista Rantamo. Kuva: Matti Leppänen

Simpukoiden lisäksi olemme kiinnostuneita näkinsammalten pärjäämisestä kipsialtistuksissa. Näkinsammalet ovat lähes jokaisen virtaveden vakiolajeja, joilla on tärkeä perustuottajan ja habitaatin monipuolisuutta ylläpitävä rooli. Tässä tarkoituksessa teemme kasvukokeita isonäkinsammalella laboratoriossa erilaisilla kipsipitoisuuksilla Savijoen vedessä. Sekä simpukoiden että sammalten kokeita tehdään nyt lokakuussa ja tuloksia voidaan odottaa marraskuussa.

Erikoistutkija Matti Leppänen
Suomen ympäristökeskus (SYKE)
Laboratoriokeskus / Ekotoksikologia ja riskinarviointi