Meet the Aalto-Helsinki iGEM team 2023!

We are the Aalto-Helsinki iGEM team 2023!

We are a very diverse group of 10 students and here you can find about us and our project.

What is iGEM?

Welcome to the exciting world of synthetic biology! At the forefront of this rapidly developing interdisciplinary field is the International Genetically Engineered Machine (iGEM) competition, which originated from the prestigious Massachusetts Institute of Technology (MIT) in Boston, USA. Synthetic biology has enormous potential applications in fields such as medicine, food, agriculture, and energy. iGEM challenges students from around the world to design and implement innovative projects using experimental work, modelling applications, and cutting-edge design techniques, all within a short time frame. To learn more, please visit the official website:

What is our idea?

Our team was born in February 2023, and shortly thereafter, we initiated our ideation process. Discovering a problem to address in our common interest proved more challenging than expected. Following intense ideation sessions, we came up with two proposals, which we subsequently presented to several experts. Consequently, the team reached a consensus to merge these ideas and address two pressing global challenges: plastic waste, and food scarcity.

The scale of plastic waste pollution is alarming, with over 350 million tons of plastics manufactured annually, and over 70% of plastic waste accumulating in landfills and oceans. This poses a significant environmental threat to ecosystems, marine life, and human health. Without any further changes to current policies, global plastic waste generation is projected to triple to one billion metric tons by 2060. Currently, the goal of plastic recycling is to reduce the need for primary plastic production. The competition between virgin plastics market and recycled plastics make recycling less attractive, since newly produced plastic has a higher relative material efficiency due to the ongoing availability of lower-cost feedstock.

Simultaneously, global food security remains a pressing concern, with over 820 million people undernourished and the need to increase food production by 70% before 2050. Conventional methods are insufficient to meet this growing demand. Focusing on the nordic countries, most of the agricultural activity focuses on meat production, even though it is a well known fact that it has a huge carbon footprint, and takes up double the resources than plant based food production. As the demand for food protein continues to rise, the development of novel and sustainable protein sources becomes environmentally and economically significant. There is great potential for producing protein-rich feed or food additives in the form of algae, yeasts, fungi and plain bacterial cellular biomass. They have a lower environmental footprint compared with other plant or animal-based alternatives.

We are focused on a circular economy system, aiming to reduce waste and utilise resources more efficiently by converting waste into valuable proteins. Our objective is to develop an optimised enzymatic plastic depolymerization system and demonstrate the feasibility of protein production utilising polyethylene terephthalate (PET) as the primary source.

Our project, PET-2-Protein, aims to develop a proof-of-concept approach for converting PET into proteins. Naturally occurring PETase enzymes are able to break down PET plastics into monomers such as terephthalic acid (TPA) and ethylene glycol (EG). Enzymatic degradation of plastic waste is an eco-friendly alternative to chemical plastic recycling. Our research aims to address the fundamental issue of plastic waste by focusing on plastic reduction. Consequently, we do not only design an optimised system for producing plastic-degrading enzymes but also optimise the enzymatic depolymerization of PET into TPA and EG, and finally, the microbial conversion of those monomers into proteins.

More about iGEM

iGEM is not only about designing our project. Using synthetic biology to address real-world problems requires thoughtful engagement with the world. In iGEM, this is referred to as Human Practices: thinking deeply and creatively about whether a synthetic biology project is responsible and good for the world. Throughout our project design we have contacted various experts and companies whose expertise shared similarities with PET-2-Protein, who have helped us to refine protocols and objectives. We have discussed several matters such as practicalities related to our methodology, the different uses that our end product could have and the ethical implications related to our work. Moreover, we are also focused in community outreach and science communication, addressing different audiences so that they can get to know our project, synthetic biology and iGEM. Our team is preparing a “science for children” workshop in Heureka as well as a collaboration with The Science Basement.

If you are interested in knowing more about our project and journey, you can visit our webpage, social media and blog.

Thank you for reading!

Our team wants to thank HiLIFE and the University of Helsinki for supporting the iGEM team and its project. Their support has been essential for us in order to participate in the iGEM program and competition. It has been an amazing experience and opportunity for all of us so far!