TET-Trainee Report

Otto Kotovirta, Kruununhaka Upper Comprehensive School (8th grade)

Hello internet!

I was a TET-trainee at Helsinki University’s Space physics team.

My tasks included writing a short text on coronal mass ejections (CME) (which you can see below) and making a catalog of multipoint observed Interplanetary coronal mass ejections (ICME) observed by different spacecraft, for which I made a program (in excel) where you enter the time of the magnetic obstacles and the travel distance to calculate the speed. I also attended some lectures and a journal club-meeting. We printed some posters for the European Geo-sciences conference.

The subject I worked with seemed quite boring and complicated because I knew almost nothing about it, but I managed to pick it up quite fast and it turned out to be really interesting. My experience with scientific research was a bit plain, because I did only cataloging work. This plain research work has it’s highlights, for example when results perfectly match up. It may feel a bit boring, but the coffee breaks and board games made it worth the effort.

I would like to thank the whole team for being excellent colleagues and being so hospitable.

Coronal mass ejections

Coronal mass ejections or CMEs are huge bubbles of plasma threaded with magnetic field lines that are ejected from the sun’s corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity. If a CME enters into interplanetary space it is referred to as an Interplanetary coronal mass ejection (ICME)

CMEs first form in the photosphere as massive arches called coronal loops spanning tens of thousands of kilometers in diameter, with magnetic field lines threading through them. These pre-eruption structures originate from magnetic fields generated by the solar dynamo in the sun’s interior. In order for these structures to develop, large amounts of energy will have to be stored. The majority of this energy will have to be stored as magnetic energy.

Credit: Wikipedia

Once a CME is ejected from the sun, It will travel anywhere from 200 km/s to even near 3000 km/s. Reaching Earth’s orbit within as little as 15 hours, but the average time a CME travels to the Earth’s orbit is 3 to 4 days. CME:s form into arches spanning 40o to 50o in width (on average), with magnetic field lines extending from the sun going through them in a sort of spiral.

Credit: Manchester et al., Space Science Reviews, 212, 1159–1219, 2017

Some CMEs gather particles from space and form a shockwave in front of them. Once CMEs collide with Earth’s magnetic field. It results in the shockwave causing a geomagnetic storm that may compress the Earth’s magnetosphere on the day side and extend it on the night side.

The importance of studying ICMEs solar flares and other space weather is that we can understand the sun’s magnetic field. It also helps us to understand more of the effects of ICMEs and large geomagnetic storms. It’s also important to study how to predict and prevent their effects for if one energetic enough was pointed at earth it potentially could knock the electricity grid unusable.

Sources: Wikipedia, Nasa.gov



Kiinnostaako avaruusfysiikka?

TET-harjoittelijat Anna Pärssinen ja Aurora Airaksinen tekivät myös haastattelun Kumpulan kampuksella. He haastattelivat opiskelijoita tarkoituksena selvittää mitä he ajattelivat avaruusfysiikasta. 

Kysymykset olivat

  • Kuinka kiinnostavalta avaruusfysiikka kuulostaa asteikolla 1-10?
  • Mikä on ensimmäinen asia, joka tulee mieleen avaruusfysiikasta?

Kyselyyn vastasi yhteensä 30 henkilöä, joiden pääaineet vaihtelivat fysiikasta taloustieteeseen ja psykologiaan. 

Keskiarvoksi avaruusfysiikan kiinnostavuus sai 8 (keskihajonta 1.7). Kun ottaa huomioon asteikon (1-10) tämä taitaa olla ihan hyvä tulos.  Vastauksien jakautumisen näkee alla olevasta kaaviosta

Toiseen kysymykseen tuli runsaasti erilaisia vastauksia.

Continue reading “Kiinnostaako avaruusfysiikka?”

Säteilyvyöt ja avaruusfysiikkaa

Helsingin yliopiston avaruusfysiikan ryhmässä vieraili 14-18.11.2022 kaksi TET-harjoittelijaa yläasteelta (Anna Pärssinen Sipoonlahden koulusta ja Aurora Airaksinen Viikin normaalikoulusta). He tutustuivat ryhmän toimintaan ja tekivät Maata ympäröiviin säteilyvöihin liittyvän pienen tutkimustyön. Aiheen taustoihin perehtyäkseen he etsivät ensin tietoa tärkeimmistä käsitteistä ja kirjoittivat näistä esittelyt. Alla on heidän kirjoittama teksti 

Kirjoittajat: Anna Pärssinen ja Aurora Airaksinen 


Aurinkotuuli tarkoittaa sitä, että aurinko puhaltaa jatkuvana virtana avaruuteen kaasukehänsä päällimmäisiä osia ja samalla magneettikenttäänsä. Auringosta tulevan tuulen suuntautuessa kohti maapalloa ja kohdatessa Maan magneettikenttän, erilaisen tapahtumien seurauksena syntyy revontulia. Aurinkotuulen ominaisuudet vaihtelevat paljon Auringon tapahtumista riippuen, eli Auringolla on aktiivisempia ja rauhallisempia vaiheita. Kuitenkin jonkinlainen hiukkasvirta on olemassa koko ajan.

Aurinkotuuli koostuu plasmasta, eli sähköisesti varautuneiden elektronien ja protonien (vetyatomin ydinten) muodostamasta kaasusta. Aurinkotuulen seassa on myös heliumytimiä (noin 8%) ja vähän muita Auringon sisältämiä raskaampia alkuaineita.

Aurinkotuulen nopeus vaihtelee, mutta se on keskimäärin 300-400 km/h. Se voi kuitenkin nousta enimmillään jopa 1000 km/h. Sillä kestää noin 2-4 päivää saapua Auringosta Maan etäisyydelle. Aurinkotuulen tiheys Maan etäisyydellä on noin 5-10 hiukkasta per kuutiosenttimetri. Maan ilmakehän tiheys merenpinnan tasolla puolestaan on noin 1,225 kg kuutiometriä kohden. Se on siis paljon tiheämpi kuin aurinkotuulen tiheys maapallon etäisyydellä.

Auringosta lähtee jatkuva aurinkotuuli ja erilaisia purkauksia (credit: NASA)

Continue reading “Säteilyvyöt ja avaruusfysiikkaa”

Work practice with the UH space physics team

I’m Martta, an 8th grade student from Mainingin koulu located in Espoo. I spent one week in a space physics research group at the University of Helsinki as I was required to complete a work practice program. I am interested in physics and natural sciences in general so completing the program in a research group was a great opportunity.

During the week I had the chance to learn about a lot of different things regarding space physics. For example: On my first day I learned about Finland’s first science satellite, Foresail-1. All of the satellite’s systems and scientific instruments were made in Finland. The main instruments of the satellite are the PATE particle telescope and a plasma brake. It also has a camera and the MATTI magnetometer.   The main point of the satellite is to gather knowledge helping to solve the problems of space debris in near-Earth space. The PATE particle telescope researches the radiation environment of near-Earth space. The plasma brake on other hand is needed when the mission of the satellite is over. With the plasma brake the satellite is able to descend to lower trails and eventually to the atmosphere where it will burn. Thus we’re able to decrease the amount of space debris.

Continue reading “Work practice with the UH space physics team”

Getting a glimpse of a physicist’s job: Vocational secondary school training experience in the Space Physics group

Text: Ovee Tulaskar, 9th grade (TET student)
Finnish International School of Tampere (FISTA)

During the past week, the Space Physics group had the pleasure to receive the visit of 15-year-old Ovee Tulaskar from the International Finnish School of Tampere (FISTA). The aim for Ovee was to get familiar with the workplace environment and the day-to-day work of research scientists at various career stages. At the end of the week, Ovee wrote a summary of her experience in which she reflects upon what she has learnt and her impressions on the academic world.

Continue reading “Getting a glimpse of a physicist’s job: Vocational secondary school training experience in the Space Physics group”

Project Coordinator for Marie-Curie Innovative Training Network SWATNet

We are seeking a PROJECT COORDINATOR for Marie-Curie Innovative Training Network SWATNet (Space Weather Awareness Training Network) at the Department of Physics, University of Helsinki. The position is for 3.5 years and would start on 1st of May or June, 2021

The SWATNet project establishes a unique PhD network in the field of heliophysics. The project aims at breakthroughs in our physical understanding – and ultimately forecasting – of key  Space Weather agents at Earth. The Consortium consists of nine Parties from eight European countries (Finland, Greece, Hungary, Belgium, UK, Italy, Poland and Portugal), as well as several recognized companies in the field. The project aims to educate 12 PhD students in the field of heliophysics with training by experienced supervisors in highly competitive, international research environments. 

Continue reading “Project Coordinator for Marie-Curie Innovative Training Network SWATNet”

JOB OPENING: Postdoctoral Position in Coronal Modelling/Observations at UH Space Physics team

We have now open a postdoctoral position in the field of modelling and observations of the solar corona. This position is part of the H2020 EUHFORIA 2.0 consortium, led by KU Leuven. EUHFORIA is a three-dimensional, time-dependent and data-driven space weather model targeted for near-real time forecasting. The postdoc is in responsible of the development of global coronal magnetic field models (based on our existing codes) for EUHFORIA and determining properties of solar eruptions using solar observations to constrain EUHFORIA’s flux rope models. The candidate should have a solid knowledge in space plasma physics as well as coding experience (e.g., Python). The other useful skills include expertise in coronal observations. The position is for about 2.5 years depending on the starting date.

Continue reading “JOB OPENING: Postdoctoral Position in Coronal Modelling/Observations at UH Space Physics team”

JOB OPENING: Two Postdoc Positions in Coronal Modelling

The Space Physics Group at the Department of Physics  is a leading European space physics group specialised both in observations and modelling of space plasmas. Our current research areas include physics of coronal mass ejections, their influence in the magnetospheric dynamics, as well as reconnection, shocks and particle acceleration. We are leading a Finnish Centre of Excellence in Research of Sustainable Space.

We are now opening two postdoctoral positions in the field of modelling of the solar corona. These positions are involved in the ERC Consolidator Grant project SolMAG (Unraveling the structure solar flux ropes and their magnetosheaths). One of the positions is involved to the development of data-driven coronal models (magnetofrictional and MHD simulations), the other one includes more applying the simulations and interpreting the simulation results. The candidate should have a good knowledge in space plasma physics as well as coding experience (e.g., Python, C/C++). The other useful skills include expertise in supercomputer environments, parallel computations, and coronal observations.

Continue reading “JOB OPENING: Two Postdoc Positions in Coronal Modelling”

Kesätöitä/Summer jobs

Helsingin yliopiston avaruusfysiikan ryhmässä on useita kesätyöpaikkoja tarjolla. Kesätyöt liittyvät avaruussääsimulaatio Vlasiaattorin parissa työskentelyyn ja auringonpurkausten tutkimiseen koronassa ja planeettainvälisessä avaruudessa. Projekteissa on mahdollisuus työskennellä sekä mallintamisen, että data-analyysin parissa. Plussaa Python-ohjelmointikielen hallinnasta ja plasmafysiikan perusteiden tuntemisesta, mutta nämä eivät ole vaatimuksena. Kesätyön pohjalta on mahdollisuus tehdä kandityö tai pro-gradu.

Continue reading “Kesätöitä/Summer jobs”