Kasvinsuojeluaineiden käyttö Savijoen valuma-alueella

Suomen ympäristökeskuksen tutkijat Katri Siimes, Ville Junttila ja Emmi Vähä seuraavat kasvinsuojeluaineiden käyttöä ja huuhtoutumista Savijoen valuma-alueella. Kasvinsuojeluaineiden seuranta on jo itsessään hyvin tärkeää. Alueella toteutetun kipsipilotin myötä voidaan tutkia myös sitä, vaikuttaako kipsikäsittely kasvinsuojeluaineiden kulkeutumiseen vesistöihin.  

Mittapato mittaa veden virtaamaa Savijoessa lokakuussa 2017. Kuva: Jarkko Ylijoki

Vuosi sitten toteutetussa SAVE-hankkeen kyselytutkimuksessa maanviljelijöiltä kysyttiin myös kasvinsuojeluaineiden käytöstä. Lämmin kiitos kaikille kyselyyn vastanneille! Vastaukset ovat erittäin tärkeitä kasvinsuojeluaineiden huuhtoutumista tutkittaessa. Tässä tekstissä käsitellään lyhyesti kyselyn tuloksia ja Savijoen vesinäytteiden kasvinsuojeluainepitoisuuksia.

SAVE:n kipsipilottialuetta koskeviin kasvinsuojeluainekysymyksiin vastasi yhteensä 52 tilaa. Vertailualueelta saatiin lisäksi kolmen tilan kasvinsuojeluainekäyttöä koskevat tiedot. Pilottialueen tiloilla vuonna 2016 käytetyissä kasvinsuojeluainevalmisteissa oli yhteensä 59 eri tehoainetta, kun taas vertailualueella käytettiin 10 eri tehoainetta. Kaikkia vertailualueella käytettyjä tehoaineita oli käytetty myös pilottialueella. Tässä kirjoituksessa tarkastelemme näitä 10 tehoainetta sekä niitä aineita, joita käytettiin pilottialueella vähintään 25 %:lla alasta tai määrällisesti eniten (>35 kg). Taulukossa 1. on esitetty näiden aineiden käyttö.

Taulukko 1. Valittujen tehoaineiden käyttömäärät ja käsitellyn peltoalan osuus pilottialueella ja vertailualueella vuonna 2016. Rikkakasvien torjuntaan käytetyt aineet on merkitty vihreällä, kasvitautien torjuntaan käytetyt aineet violetilla ja kasvunsääteet oranssilla.

Eniten käytettiin glyfosaattia, jonka käyttömäärä pilottialueella oli 1000 kg ja vertailualueella 52 kg. Glyfosaatilla käsitelty pinta-ala kattoi peltoalasta pilottialueella 39 % ja vertailualueella 44 %. MCPA:ta (eli 2-metyyli-4-kloorifenoksietikkahappoa) ruiskutettiin laajimmalle alueelle: pilottialueella sillä käsiteltiin 42 % peltoalasta ja vertailualueella 9 % peltoalasta (Taulukko 1).

 

Käytetyimmät tehoaineet: MCPA ja glyfosaatti

MCPA:ta ruiskutettiin tutkitulla Savijoen valuma-alueella yli 40 % peltoalasta, mikä on viljavaltaisilla alueilla tavanomaista. MCPA.ta on käytetty 1950-luvulta lähtien leveälehtisten rikkojen torjuntaan mm. viljapelloilla ja se on edelleen toiseksi eniten myyty kasvinsuojeluaine Suomessa. MCPA:n laajamittainen käyttö selittänee myös sen, että se on ollut yleisimmin havaittu kasvinsuojeluaine pintavesien kasvinsuojeluaineiden seurannassa. Savijoelta havaitut pitoisuudet olivat enimmäkseen pieniä, mutta ruiskutuskausi näkyi selvästi MCPA:n pitoisuuksien nousuna vesissä. Pitoisuuksien keskiarvo jäi vuosikeskiarvolle asetettua ympäristönlaatunormia (1,6 µg/l) alhaisemmaksi.

Glyfosaatti on Suomen myydyin herbisidi eli rikkakasvien torjunta-aine. Sen käytön uudelleenhyväksymisestä EU:ssa käydään edelleen keskustelua (Tukes). Glyfosaatin osuus Suomen kasvinsuojeluaineiden tehoainemyynnistä oli 56 % (n. 850 tonnia) vuonna 2016 (Tukes). Tällä määrällä voisi käsitellä noin kolmasosan Suomen maatalousalasta.  Glyfosaattia käytetään erityisesti juuririkkojen, eli monivuotisten kasvien juurista esiin pomppaavien kasvustojen, torjuntaan. Juuririkkojen torjunnan tarve on kasvanut kevennettyjen muokkausmenetelmien yleistyessä. Sen seurauksena glyfosaatin myyntimäärät ovat kasvaneet 1990-luvulta lähtien.  Glyfosaatin käyttömäärät Savijoen valuma-alueella eivät poikenneet tavanomaisista käyttömääristä Etelä-Suomessa. Muutama kipsipilottialueen viljelijä on mukana myös Luonnonvarakeskuksen glyfosaattihankkeessa (GlyFos II -hankkeen kotisivut).

Glyfosaattia ja sen hajoamistuotetta AMPA:a havaittiin Savijoen vesinäytteistä, mutta pitoisuudet keikkuivat enimmäkseen määritysrajan (0,10 µg/l) tuntumassa. Glyfosaatin pitoisuus oli huomattavasti pienempi kuin sille ehdotettu ympäristönlaatunormi (100 µg/l; Kontiokari & Mattsoff, 2011). Glyfosaatin laajan käytön huomioiden sitä havaitaan vesistöistä melko pieniä määriä. Tämä johtunee siitä, että se sitoutuu erittäin vahvasti maaperään.

 

Muut pilottialueella yleisesti käytetyt aineet

Protiokonatsoli ja tebukonatsoli olivat yleisimmin käytetyt kasvitautien torjunta-aineet tutkitulla alueella. Tebukonatsolia havaittiin yleisesti loppukesästä 2016 pilottialueen alapuolisella näytepisteellä, mutta sen pitoisuudet jäivät noin kolmannekseen ehdotetusta ympäristönlaatunormista. Protiokonatsolin pitoisuutta ei ole analysoitu Suomen vesistöseurannassa. Se ei myöskään tässä seurannassa kuulunut laboratorion analysoitujen aineiden pakettiin.

Fluroksipyyriä, florasulaamia ja klopyralidia levitettiin kutakin yli neljännekselle peltoalasta pilottialueella. Näitä aineita saa käyttää mm. kevätviljojen ja apilattomien nurmien rikkakasvien torjunnassa. Näitä havaittiin vesinäytteistä, mutta ehdotetut ympäristönlaatunormit (fluroksipyyrille 460 µg/l; florasulamille 0,016 µg/l ja klopyralidille 50 µg/l) eivät ylittyneet vesinäytteissä.

Pilottialueella käytettiin suuria määriä diklorproppi-P:tä ja mekoproppi-P:tä, jotka ovat viljoilla käytettäviä fenoksihappoherbisidejä kuten MCPA. Niitä havaittiin Savijoen vesinäytteissä, mutta pitoisuudet olivat pieniä.

Myös perunan sekä mm. härkäpavun viljelyssä käytettävää aklonifeenia käytettiin melko suuri määrä, vaikka levitysala ei kovin suuri ollutkaan (7 % peltoalasta). Aklonifeenia ei kuitenkaan havaittu Savijoen vesinäytteistä.

Juurikkaiden rikkakasvien torjunnassa käytettävää metamitronia ruiskutettiin vain prosentille peltoalasta, mutta peltolohkoa kohden käytettävät määrät olivat suuria ja ainetta on ruiskutettu todennäköisesti monta kertaa kesän aikana. Metamitroni sitoutuu melko heikosti maahan ja huuhtoutuu siksi helposti. Sekä metamitronia että sen hajoamistuotetta havaittiin vesinäytteistä, mutta pitoisuudet eivät ylittäneet ympäristönlaatunormia.

 

Muut vertailualueella käytetyt torjunta-aineet

Taulukon 1. kuuden viimeisen aineen käyttö ei ollut kovin laajamittaista pilottialueella, mutta aineet ovat kiinnostavia, sillä niitä oli käytetty sekä vertailualueella että pilottialueella. Kasvinsuojeluaineista yleisimmin käytetyt aineet, tai edes yleisimmin havaitut aineet, eivät ole välttämättä niitä, joista syntyy suurin ympäristöriski.

Triadimenoli, imatsaliili ja pikoksistrobiini ovat kasvitautien torjunta-aineita. Näistä triadimenolia ja imatsaliilia käytettiin Savijoella lähinnä peittausaineina. Pikoksistrobiinia havaittiin molemmilla näytteenottopaikoilla, triadimenolia vain vertailualueen mittapadolla. Triadimenolin ja pikoksistrobiinin pitoisuudet eivät ylittäneet ehdotettuja ympäristönlaatunormeja.

Triasulfuroni ja tritosulfuroni ovat pien’annosherbisidejä eli rikkakasvien torjunta-aineita, joiden levitysmäärät peltohehtaaria kohti ovat hyvin pieniä. Ne ovat kuitenkin erittäin kulkeutuvia aineita. Tritosulfuronia havaittiin Savijoesta melko yleisesti, mutta sen pitoisuus ei ylittänyt ehdotettua ympäristönlaaturnomia (0,75 µg/l). Triasulfuroni on vesikasveille erittäin haitallista ja sille ehdotettu ympäristönlaatunormi on vain 0,0018 µg/l (Kontiokari & Mattsoff, 2011). Triasulfuroni on ainoa markkinoilla oleva kasvinsuojeluaine, jonka pitoisuus on ylittänyt sille ehdotetun ympäristönlaatunormin jokivesissä 2010-luvulla toistuvasti (Karjalainen ym. 2014). Vuonna 2016 triasulfuronia ei havaittu Savijoen vesinäytteissä, mutta elo-syyskuussa 2017 sitä havaittiin muutamasta näytteestä melko korkeina pitoisuuksina. Laskennallinen vuosikeskiarvo ei kuitenkaan ylittänyt ehdotettua ympäristönlaatunormia. Triasulfuroni poistui käytöstä syyskuussa 2017.

Näytteenottoa mittapadolla ja Bränikkälässä viime kesänä ja keväällä 2016. Kuvat: Katri Siimes ja Heidi Ahkola

Yhteenvetoa käytettyjen aineiden havaitsemisesta vesissä

Tarkasteluun valituista (taulukossa 1. näkyvistä) 18:sta kasvinsuojeluaineiden tehoaineesta 15 analysoitiin vesinäytteistä. Kahden aineen kohdalla (aklonifeeni ja pinoksadeeni) pitoisuudet olivat niin pieniä, ettei niitä havaittu vesinäytteistä, joten vain 13 aineesta saatiin numeerista pitoisuustietoa. Havaitsemiseen vaikuttavat mm. laboratoriossa käytetty määritysraja ja näytteenoton ajoittuminen. Uomaan kulkeutumiseen vaikuttavat lukuisat tekijät kuten aineen sitoutuminen, hajoamisnopeus, käsitellyn pellon etäisyys uomasta ja sääolot levityksen aikaan ja sen jälkeen.

Nykytiedon mukaan tutkimusalueella yleisimmin käytetyt aineet eivät aiheuta vesieliöille merkittävää haittaa. On kuitenkin huomioitava, että tässä tarkastelussa on ollut mukana vain 18 kyselytutkimuksessa mainituista 59 aineesta, eikä aineiden yhteisvaikutuksia ole huomioitu mitenkään.

 

Mihin tietoja tarvitaan tulevaisuudessa?

Suomessa on vain vähän tietoa kasvinsuojeluaineiden huuhtoutumisesta. Savijoen aineistosta lasketaan tehoainekohtaisia päästökertoimia, joita käytetään hyväksi muun muassa kasvinsuojeluaineiden riskien arvioinnissa ja hallinnassa. Luotettavien päästökertoimien laskemiseksi tarvitaan ainekohtainen käyttömäärätieto koko mittauspisteen yläpuolisella valuma-alueella. Käytännössä kyselyn ulkopuolelle jääneiden tilojen kasvinsuojeluaineiden käyttö pitää arvata, vaikka erilaisia interpolointimenetelmiä käytettäisiinkin, ja tästä aiheutuu suuri epävarmuus laskettavaan päästökertoimeen.

Päästökertoimien avulla voidaan selvittää kipsin vaikutusta kasvinsuojeluaineiden huuhtoumiin. Mikäli pilottialueen päästökerroin muuttuu kipsin levityksen jälkeen (2016 vs 2017) enemmän kuin vertailualueen päästökerroin (2016 vs 2017), voidaan olettaa erojen yhdeksi syyksi kipsin vaikutus. Vertailu voidaan tehdä luotettavasti vain sellaisille aineille, joille on voitu laskea päästökertoimet sekä vertailualueella että pilottialueella kahtena peräkkäisenä vuotena. Näillä näkymin se tulee olemaan mahdollista ainakin glyfosaatin ja MCPA:n kohdalla.

Jos tutkimus osoittaa, että kipsin levitys lisää kasvinsuojeluaineiden huuhtoutumista, tulisi kipsin levityksen riskejä arvioida vielä tarkemmin alueilla, joilla kasvinsuojeluaineet aiheuttavat ongelmia vesistöissä. Mikäli kipsi vähentää huuhtoutumista, kipsiä voitaisiin mahdollisesti hyödyntää alueilla, joilla kasvinsuojeluaineet aiheuttavat riskejä vesieliöille. Tutkittu tieto on hyödyllistä myös siinä tapauksessa, jos kipsi ei merkittävästi vaikuta kasvinsuojeluhuuhtoumiin.

Mikäli joku alueen viljelijä haluaa vielä täydentää kasvinsuojeluaineiden käyttötietokyselyä vuoden 2016 osalta, otamme kaiken tiedon ilolla vastaan. Samoin kannustamme kaikkia vastaamaan vuoden 2017 käyttötietokyselyihin!

 

Katri Siimes, Ville Junttila, Emmi Vähä ja Samuli Puroila
Suomen ympäristökeskus (SYKE)

Lisätietoja: Katri Siimes, etunimi.sukunimi@ymparisto.fi

 

Vesinäytteiden kasvinsuojeluainepitoisuudet on analysoitu maa- ja metsätalousministeriön rahoittamassa Maa- ja metsätalouden kuormituksen ja sen vesistövaikutusten seuranta (MaaMet)-hankkeessa.

Kontiokari & Mattsoff 2011. Proposal of Environmental Quality Standards for Plant Protection Products. The Finnish Environment 7/2011. (Linkki: https://helda.helsinki.fi/handle/10138/37029)

Karjalainen, Siimes, Leppänen ja Mannio 2014. Maa- ja metsätalouden kuormittamien pintavesien haitta-aineseuranta Suomessa. Seurannan tulokset 2007–2012. Suomen ympäristökeskuksen raportteja 38/2014

 

 

 

 

 

 

 

 

 

Vaikuttaako kipsinlevitys kaloihin?

Suomen ympäristökeskuksen tutkijat Jarno Turunen ja Janne Markkula sähkökalastamassa Savijoella, Liedonperällä lokakuussa 2017.  Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

SYKEn tutkijat suorittivat lokakuussa sähkökalastuksia Savijoen valuma-alueella. Sähkökalastuksilla pyrittiin saamaan selville onko kipsin levityksellä merkittäviä vaikutuksia Savijoen kalastoon. Kipsin levitys lisää veden sulfaattipitoisuuksia, millä voi korkeina pitoisuuksina olla haitallisia vaikutuksia makean veden kaloihin ja niiden lisääntymiseen. Toisaalta kipsin levitys vähentää maahiukkasten huuhtoutumista vesistöön, mikä voi parantaa virtakutuisten kalojen, kuten taimenen, lisääntymismenestystä. Maahiukkaset voivat joen pohjalle laskeutuessaan tukkia sorapohjia veden virtaukselta, mikä haittaa sorapohjille kutevien kalojen, kuten taimenen, mätimunien kehitystä.

Sähköä Savijokeen

Kalaston selvitys tehtiin sähkökalastamalla, joka on standardimenetelmä virtavesien kalastoselvityksissä ja -tutkimuksissa. Menetelmässä sähkökalastuslaitteella luodaan kalastettavalle alueelle tasavirtasähkökenttä, mikä tainnuttaa kalat (katso menetelmästä kertova video). Sähkökalastajan apuna on haavitsija, joka nappaa taintuneet kalat haaviin. Haavista kalat kipataan vesiastiaan ja pyynnin päätyttyä lajit tunnistetaan ja mitataan. Sähkökalastetun alueen pinta-ala mitataan ja saaliista lasketaan kalalajien tiheyksiä suhteessa alaan. Sähkökalastus ei vaurioita kaloja, joten ne voidaan laskea mittausten ja kalojen virkoamisen jälkeen takaisin veteen.

Sähkökalastaja ja haavitsija yhteistyössä syksyisessä jokimaisemassa. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Sähkökalastus toteutettiin neljässä paikassa Savijoen valuma-alueella: Rynkön koskella, Yliskulman koskialueella, Yliskulman purossa ja Mittapadon koskella. Paikoista oli, Mittapatoa lukuun ottamatta, aiempaa sähkökalastusaineistoa ajalta ennen kipsin levitystä, johon saalista voitiin verrata. Mittapadon paikka taas sijaitsee kipsin levitysalueen ulkopuolella, joten myös sen saalista käytettiin kipsin vaikutusten arviointiin.

Kivisimppu, kivennuoliainen… taimen!

Kuten usein käy, päätti luonto taas tehdä tutkijoiden työstä hankalaa. Koetta edeltävän viikon sateet olivat nostaneet Savijoen veden tulvakorkeuteen eikä ennuste luvannut helpotusta seuraavillekaan viikoille. Homma päätettiin toteuttaa sovittuna päivänä.

Tulvalle eväänsä lotkauttamatta sähkökalastajat tekivät homman suunnitellusti. Saalistakin saatiin, jos kohta suuret maineteot jäivät uupumaan. Saalis koostui valtaosin kivisimpuista ja kivennuoliaisista, joita saatiin kymmenittäin. Taimenista saatiin kaksi havaintoa. Toinen, 31 cm pitkä vonkale, eksyi haaviin Rynkön koskesta ja toinen, 8 cm poikanen, Yliskulman purosta. Verrattuna aiempiin kalastuksiin, olivat kivennuoliaisten tiheydet samalla tasolla ja kivisimppujen jonkin verran korkeammalla syksyllä 2017.

Haaviin saatu kivennuoliainen tutkijan kädellä. Virrottuaan kalat pääsivät takaisin jokeen. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Savijoessa aiemmin tavattuja särkikaloja, kuten turpaa ja töröä, ei saatu saaliiksi. Näiden kalojen tiheydet ovat olleet pieniä myös aiemmissa kalastuksissa, joten puuttuminen saaliista selittynee satunnaisuudella ja hankalilla olosuhteilla. Lisäksi vesi oli jo jäähtynyt noin 8 asteiseksi, joten kyseiset lajit ovat voineet poistua koskialueilta talvehtimaan miedommin virtaaviin suvantoihin.  Kyseisiä lajeja ei myöskään saatu vertailualueena toimivalta Mittapadon paikalta, josta saaliiksi tuli vain kivennuoliaisia.

Taimenten tiheyksissä huomio kiinnittyy Yliskulman puron pieneen tiheyteen (0.6 yksilöä / 100 m2) verrattuna vuoden 2012 tiheyksiin (17 yksilöä / 100 m2). Ero selittynee osittain istutuksilla, joita ei keväällä 2017 tehty. Puroon on istutettu viimeksi 2016 keväällä taimenen vastakuoriutuneita poikasia (8000 kpl), joita ei siis tällä kertaa saatu saaliiksi. Ongelmallista arvion kannalta on myös se, ettei kalastuksia ole tehty viime vuosina. Taimenen poikasten luontainen kuolevuus vaihtelee runsaasti vuosien välillä. Saaliiksi saatu 8 cm poikanen edustaa todennäköisesti 2017 keväällä luonnonkudusta kuoriutuneita poikasia. Sen löytyminen on hyvä merkki ja osoittaa, että purossa on myös luontaista lisääntymistä.

Aiempien syksyjen ja syksyn 2017 (lihavoitu) sähkökalastusten tulokset. Luvut ovat ilmoitettu yksilömäärinä per 100 m2 kalastettua alaa. Tiheydet on laskettu yhden pyynnin perusteella.

Mitä tuloksista voisi päätellä?

Tulva varmasti heikensi kalojen pyydystettävyyttä. Vaikuttaa kuitenkin siltä, että kipsin levitys ei ole vaikuttanut ainakaan haitallisesti tyypillisiin koskikaloihin kuten kivisimppuihin ja kivennuoliaisiin. Taimenen osalta eroa ei Savijoen pääuomassa ole, ja ero Yliskulman puron taimentiheyksissä selittynee istutuksilla, tulvalla ja luontaisilla tekijöillä. Savijoen sulfaattipitoisuudet ovat olleet kipsin levityksen jälkeen keskimäärin 30 mg/l ja hetkellisesti reilu 400 mg/l. Yli 400 mg/l pitoisuuksilla on havaittu lieviä negatiivisia vaikutuksia lohikalojen mädin kehitykseen pitkän ajan altistuskokeissa, mutta hetkellisinä piikkeinä vaikutusta tuskin on.

Vertailualueen saaliin, aiempien sähkökalastusten ja matalien sulfaattipitoisuuksien valossa kipsin levitys ei näytä vaikuttavan merkittävästi kaloihin tai muihinkaan vesieliöihin. Toki vahvemman näytön saamiseksi sähkökalastusseurantaa olisi hyvä jatkaa ensi vuonna. Hankkeessa on lisäksi käynnissä taimenen mädin haudontakoe, joka antaa tärkeää lisävalaistusta kipsin levityksen vaikutuksista taimeneen. SAVE-hanke ei siis ole etsimässä pelastuskeinoja Saaristomerelle virtavesiluonnon kustannuksella.

Jarno Turunen, SYKE

 

Mädinhaudontaa Savijoella

Seuraavien kuukausien aikana Savijoen rantatörmillä seikkailee jälleen kahluuvarusteisiin sonnustautuneita tutkijoita! Tällä kertaa olemme kiinnostuneita siitä, vaikuttaako peltojen kipsikäsittely taimenen alkioiden selviytymismahdollisuuksiin. Vastausta tähän kysymykseen haemme mädinhaudontakokeen avulla. Kokeessa seuraamme taimenen mätimunien selviytymistä ja alkioiden kasvua. Aloitimme kokeen lokakuun lopulla, jolloin veimme hedelmöitetyt mätimunat koepaikkojen soraikkoihin hautoutumaan.

Koepaikkoja on kaikkiaan kolme. Savijoella kipsialueen koepaikaksi valikoitui Koskelan alue, kun taasen kipsitön vertailupaikka löytyi mittapadon yläpuoliselta jokiosuudelta. Lisäksi sisällytimme kokeeseen yhden metsäisen vertailupaikan läheisellä Järvijoella. Kaikissa näissä koepaikoissa joen pohjan ja veden virtauksen olosuhteet olivat sopivia taimenen jälkikasvun haudonnalle.

Luonnossa taimenen alkiot kehittyvät ja kuorituvat joen pohjassa soran suojissa, niin kutsutussa kutupesässä. Kokeessa matkimme tätä taimenemon tekemää rakennelmaa hautaamalla mätimunat taimenen luontaisen kutupesän olosuhteita muistuttavaan ”keinopesään”. Keinopesä koostui yhdestä korista, jossa oli neljä haudontasylinteriä (Kuva 1). Mätimunat laitoimme sylintereiden sisään sorakerrosten väliin. Tämän jälkeen peitimme koreissa olevat sylinterit varovasti soralla ja kivillä. Lopuksi laitoimme korin joen pohjaan kaivettuun pieneen syvennykseen ja tuimme sen soralla ja kivillä (Kuva 2). Kas näin, keinopesä oli valmis! Ja jotta kaikki munat eivät olisi samassa korissa, rakensimme kullekin koepaikalle kolme pesää.

Kuva 1. Keinopesän kori ja haudontasylinterit. Vasemmanpuoleisessa kuvassa alimmaisena on valmis sylinteri, jossa jo kansi päällä, alaoikealla olevaan sylinteriin on juuri laitettu mätimunat. Oikeanpuoleisessa kuvassa on jokeen laittoa vaille valmis haudontakori. Kuvat: Maija Hannula

Suomen kylmissä vesissä taimenenpoikaset kuoriutuvat pääsääntöisesti keväällä. Näin ollen annamme mätimunissa olevien alkioiden kasvaa ja kehittyä keinopesien suojissa ensi kevääseen saakka. Keväällä laskemme kuoriutuneet, kuolleet ja elävät alkiot. Elossa olevista alkioista mittaamme myös pituuden.

Kuva 2. Valmis keinopesä Savijoella. Tarkalla silmällä – tai hyvällä mielikuvituksella – kuvasta voi erottaa joen pohjassa olevan haudontakorin reunat. Kuva: Maija Hannula

Aiemmissa mädinhaudontakokeissa alueilla, joilla vedenlaatu on ollut hyvä ja ihmistoiminnan vaikutus vähäistä, on suurin osa taimenen alkioista selvinnyt talven yli kevääseen. Ihmistoiminnan vaikutuksen alaisilla paikoilla sen sijaan on selviytyminen usein ollut huomattavasti heikompaa. Savijoella peltojen kipsikäsittely saattaisi parhaimmillaan vaikuttaa siten, että mätimunat selviytyisivät kipsikäsittelyalueella paremmin kuin käsittelemättömällä alueella – kenties yhtä hyvin kuin metsäisellä vertailupaikalla Järvijoella. Huonoimmassa tapauksessa peltojen kipsikäsittely vähentäisi mätimunien selviytymistä vertailupaikkoihin nähden. Jäämme siis jännityksellä odottamaan ensi kevättä, jolloin meille selviää, onko kipsikäsittelyllä vaikutusta taimenen alkioiden selviytymiseen ja kasvuun!

Hanna Arola
Bio- ja ympäristötieteiden laitos
Jyväskylän yliopisto

San Pellegrino ja Savijoki – sulfaatit vesissämme

Petri Ekholm
Erikoistutkija
Suomen ympäristökeskus

Kipsin sisältämä sulfaatti on herättänyt huolta: voisiko sillä olla haitallisia vaikutuksia vesiympäristössä? SAVE-hankkeessa näitä mahdollisia vaikutuksia tutkitaan, mutta mitä sulfaatti oikeastaan on ja mistä se on peräisin?

Sulfaatti (SO4) on yleinen osanen elollisessa ja elottomassa luonnossa. Kasveille se on tärkeä rikin lähde, ja valtameriveden sulfaattipitoisuus – peräti 2700 mg/l – kertoo kallioperän rikkipitoisten mineraalien rapautumisesta. Kemiallisesti määriteltynä sulfaatti on rikkihapon (H2SO4) anioni, ja ihmisen aiheuttamat sulfaattipäästöt liittyvätkin pitkälti rikkihapon käyttöön. Rikkihappo on maailman käytetyin kemiallinen yhdiste ja sen maakohtaisesta kulutuksesta voidaan tehdä päätelmiä jopa bruttokansantuotteesta. Rikkihappoa tarvitaan mitä moninaisimmissa teollisuuden prosesseissa lannoitteiden valmistuksesta ja sellun keitosta aina pigmenttien valmistukseen.

Eri vesien sulfaattipitoisuuksia. Kuva aukeaa suuremmaksi klikkaamalla.

Ympäristötutkimus kiinnostui sulfaatista 1970-luvulla, kun maailma havahtui happosateiden aiheuttamiin ongelmiin. Hiilivoimaloiden piiput tupruttivat ilmaan rikkidioksidia, joka muuntui ilmakehässä rikkihapoksi. Nykyisin voimalaitosten savukaasuja pestään ja happamoittavat rikkipäästöt ovat vähentyneet. Myös tässä prosessissa syntyy kipsiä. Sulfaatin toi uudelleen otsikoihin Talvivaaran kaivoksen natriumsulfaattipäästöt, jotka suolasivat lähijärviä. Esimerkiksi kaivoksen alapuolisen Kivijärven pohjanläheisessä vedessä sulfaattipitoisuus on ollut yli 6000 mg/l.

Talvivaaran tapauksessa sulfaatin alkuperä oli prosessissa käytetty rikkihappo ja osin myös malmin sisältämät rikkiyhdisteet (sulfidit). Järviä ja metsiä tuhonneen happaman laskeuman rikki taas oli peräisin kivihiilestä – jos kivihiili on aikoinaan muodostunut meriveteen kontaktissa olleesta turpeesta, sen rikkipitoisuus on erityisen korkea. Mutta mistä Siilinjärven kipsin sulfaatti on peräisin?

Kuten Samuli kertoi tehdasvierailua kuvaavassa blogissaan, kipsiä eli kalsiumsulfaattidihydraattia syntyy sivutuotteena, kun apatiittimineraalia liuotetaan rikkihapolla. Näin saadaan fosforihappoa lannoiteteollisuuden tarpeeseen. Tätä nykyä Siilijärvellä käytettävä rikkihappo valmistetaan kotimaisessa öljynjalostuksessa syntyvästä rikistä. Viime syksynä Savijoen pelloille levitettiin siis sulfaattia, joka on erotettu fossiilisista polttoaineista, ts. muinaisten levien ja bakteerien merivedestä sitomaa rikkiä, sekä Siilinjärven kalliosta peräisin olevaa kalsiumia.

Happamoitumistutkimuksissa sulfaattia pidettiin niin sanottuna läpivirtausionina, joka ei reagoi vesiympäristössä, mutta kuvastaa kylläkin happaman laskeuman suuruutta. Sulfaatilla on kuitenkin tärkeä rooli esimerkiksi pohjasedimenttien ainekierroissa. Itämeressä suurellakaan sulfaattikuormituksella ei ole merkitystä, sillä murtovesi sisältää luonnostaan runsaasti sulfaattia, esimerkiksi Helsingin edustalla 500 mg/l. Järviin sulfaattia ei kuitenkaan pidä päästää, ainakaan suuria määriä, sillä se voi vähentää niiden pohja-aineksen kykyä sitoa fosforia ja siten pahentaa rehevöitymiskierrettä.

Sulfaattia kuitenkin päätyy järviin monista eri lähteistä. Koska sulfaattikuormitusta seurataan vain muutamien kuormittajien osalta, voimme esittää pelkästään karkean arvion kuormituksen suuruudesta. Sen mukaan Suomen kolme suurinta järvien sulfaattikuormittajaa ovat maatalous, ilmalaskeuma ja selluteollisuus. Ilmalaskeuman kontolle on tässä laskettu metsistä tuleva sulfaattihuuhtouma, mikä kuvastanee aikojen saatossa maaperäämme sitoutunutta ilmaperäistä, siis energian tuotannosta peräisin olevaa sulfaattia.

Rautasulfaatteja käytetään niin raaka- kuin jäteveden puhdistuksessa. Esimerkiksi HSYn (Helsingin seudun ympäristöpalvelut) puhdistusprosessissa Päijänteen veden noin 8 mg/l sulfaattipitoisuus nousee yli kaksinkertaiseksi. Tämä ei kuitenkaan vielä riitä muuttamaan pääkaupunkiseudun kraanavettä kulinaariseksi kivennäisvedeksi, sillä esimerkiksi San Pellegrinon mineraalivedessä sulfaattipitoisuus on yhtä korkea kuin Suomenlahdessa. Makutestien mukaan sulfaatti parantaa veden makua. Optimaalinen pitoisuus kalsiumsulfaatille on 270 mg/l. Maailman terveysjärjestö WHO ei ole asettanut juomaveden sulfaatille ylärajaa, joskin laksatiivisia vaikutuksia saattaa ilmetä pitoisuuden ylittäessä 1000 mg/l, makuongelmia seuralaiskationista riippuen jo aiemmin – natriumsulfaatti ei ole yhtä hyvää kuin kalsiumsulfaatti.

Savijoessa toistaiseksi havaitut sulfaattipitoisuudet ovat suhteellisen pieniä: kipsin levityksen jälkeen keskiarvo on ollut vain runsas 30 mg/l. Hetkellisesti pitoisuus on toki ollut yli 400 mg/l. Blogeissamme on jo aiemmin käsitelty tämän pitoisuustason vaikutusta – tai paremminkin vaikuttamattomuutta – vuollejokisimpukkaan. SAVE-hankkeessa on tarkoitus vielä selvittää, miten sulfaatti vaikuttaa kaloihin ja päällysleviin. Lisäksi tutkitaan, voisiko jokien pohjalta vapautua fosforia sulfaattipitoisuuden nousun vuoksi samalla tavalla kuin järvissä. Korkeina pitoisuuksina sulfaatista on haittaa rakenteille, esim. teräkselle ja betonille, mutta tällaisia vaikutuksia ei ole odotettavissa Savijoen maltillisissa sulfaattipitoisuuksissa.

Näkyykö kipsikäsittely Savijoen levämäärissä?

Syksyllä 2016 SYKEn tutkijat aloittivat Savijoella pohjalevien kasvua mittaavan kokeen. Kokeessa selvitetään kipsikäsittelyn vaikutuksia Savijoen pohjassa kasvavien päällyslevien tuotantoon. Koe on osa Maa- ja metsätalouden vesistövaikutusten seurantaohjelmaa ja sitä jatketaan tänä syksynä.

Levien määrä ja lajisto on tärkeä vesistöjen ekologisen tilan mittari. Virtavesissä pohjalla kasvavat päällyslevät ovat laiduntavien pohjaeläinten ravintoa. Pohjaeläimet taas ovat tärkeä kalojen ravintokohde.

Levien määrään vaikuttaa erityisesti saatavilla olevien ravinteiden ja valon määrä. Kipsikäsittely saattaakin siis merkittävästi vaikuttaa levien määrään ja tätä myötä Savijoen tilaan.

Rautakaupan kautta maastoon

Kokeen käytännön valmistelu alkoi rautakaupasta. Pohjalevien tuotantoa mitataan joen pohjalle aseteltavilta tummanharmailta lattialaatoilta, jotka ankkuroitiin pohjaan rakennustiilten ja kulmarautojen avulla. Laatat on kiinnitetty silikonilla kulmarautoihin ja kulmaraudat nippusiteillä rakennustiiliin.

Samalla vedenalaisen valon määrää ja veden lämpötilaa mitataan 30 minuutin välein tiiliin kiinnitetyillä jatkuvatoimisilla loggereilla.

Tutkimusta tehdään kahdella koealueella. Toinen paikoista sijaitsee kipsinlevityksen vaikutuspiirissä (Savijoki Koskela) ja vertailupaikka joen yläjuoksulla alueella (Savijoki mittapato).

Vasemmalla tutkimuspaikat Savijoessa. Savijoki Koskela on kipsinlevityskokeen vaikutuspiirissä. Yläjuoksun tutkimuspaikka Savijoki mittapato sijaitsee kipsinlevitysalueen yläpuolella. Oikeanpuoleisessa kuvassa SYKEn harjoittelija Maria Rajakallio nostaa uomassa ollutta levälaattaa mittauksiin. Kuva: Tiina Laamanen, SYKE

Ensimmäinen osa kokeen laatoista vietiin paikoilleen 29.8.2016 ja haettiin pois kokeen puolivälissä 11.10. Toinen osa laatoista vietiin paikoilleen kokeen puolivälissä 11.10. ja haettiin pois 9.11.

Laatoilta mitataan levien määrää sekä maastossa kenttämittarilla että SYKEn laboratoriossa tarkemmin uuttomenetelmällä. Kullakin tiilellä on kaksi laattaa. Toiselta laatoista mitattiin levämäärä heti niiden uomasta poiston jälkeen BenthoTorch-fluorometrillä. Fluorometri on laite, jolla voidaan maastossa mitata kolmen leväryhmän määrää a-klorofyllin fluoresenssina. A-klorofyllin summana saadaan arvio levien kokonaismäärästä. Mittaamisen jälkeen laattaparin toinen puolisko suljettiin minigrip-pussiin ja pakastettiin odottamaan laboratorioanalyysejä.

BenthoTorch-fluorometrillä on kätevä mitata maastossa päällyslevien määrää. Kuvassa Marja Lindholm Muhosjoella. Oikeanpuoleisessa kuvassa uomasta nostettuja laattapareja Savijoen Koskelan tutkimuspaikalla lokakuussa 2016. Laatoilta on juuri tehty BenthoTorch-fluorometrilla levämäärien mittaukset (pyöreät rengasmaiset jäljet vasemmanpuolimmaisilla laatoilla). Kuvat: Tiina Laamanen, SYKE

Talvi yllätti!

Syksyn 2016 olosuhteet olivat talviset jo marraskuussa. Tällöin ei kenttämittauksia pystytty enää tekemään, koska uoma oli jäässä! Yllättäen saapuneen talven vuoksi vain kaksi alapuolisen tutkimuspaikan loggereista onnistuttiin kokeen päättyessä löytämään. Yläosalla talvehtinut valologgeri, ja sen data, saatiin kuitenkin onnekkaasti pelastettua tänä kesänä.

Talviset olosuhteet yllättivät viimeisellä käyntikerralla 9.11.2016. Kuvassa jään alla olevia laattoja yläjuoksun Savijoen mittapadon tutkimuspaikalla. Kuva: Tiina Laamanen, SYKE

Mitä tulokset kertovat?

Syksyn 2016 toteutetun seurannan avulla saatiin selville tärkeää taustatietoa Savijoen levämääristä. Nyt tiedetään molempien tutkimusalueiden levämäärät ennen kipsikäsittelyn vaikutusta. Näiden taustapitoisuuksien avulla voidaan jatkossa arvioida kipsin mahdollisia vaikutuksia.

Kokonaislevämäärä oli klorofylliuuttomenetelmällä arvioituna Koskelan alueella keskimäärin 6,9 µg/cm² ja mittapadon tutkimuspaikalla 1,3 µg/cm². Yläjuoksun vertailualueen pienempi päällyslevien tuotanto selittyy todennäköisesti valaistus- ja virtausolosuhteiden eroilla, sillä paikkojen veden ravinnepitoisuudet eivät eronneet ennen kipsikäsittelyä.

Levämäärien arvioinnissa oli menetelmissä selvä eri. BenthoTorchilla mitattuna Koskelan alueen levämäärä oli keskimäärin 3,2 µg/cm² ja mittapadon tutkimuspaikalla 0,7 µg/cm². BenthoTorchilla ja uuttomenetelmällä arvioidut klorofyllimäärät vastasivat melko hyvin toisiaan pienillä levämäärillä. Kun leväkasvustoa oli paljon, fluorometrillä arvioitu levämäärä oli kuitenkin vain puolet uuttomenetelmällä arvioidusta. Fluorometri mittaakin levämäärän optisesti vain pintakerroksen perusteella, kun taas uuttomenetelmässä mitataan koko laatan levästö.

Laboratorion uuttomenetelmällä (y-akseli) ja BenthoTorch-kenttäfluorometrillä (x-akseli) mitattujen laattojen klorofyllimäärien suhde syksyn 2016 ensimmäisellä koejaksolla.

Mitä seuraavaksi?

Päällyslevien määrää mittaava koe toistetaan syksyllä 2017. Tämän jälkeen tuloksia voidaan rinnastaa vuoden 2016 mittauksiin ja arvioida mahdollisten vedenlaadun muutosten vaikutusta pohjalevien määrään.

Tilanne on erittäin mielenkiintoinen. Jos kipsikäsittelyn myötä leville saatavilla olevien ravinteiden määrä vähentyisi, voisi myös levien määrän olettaa vähenevän. Toisaalta jos kipsikäsittely kirkastaa jokivettä, saattaa lisääntynyt valon määrä lisätä levien kasvua. Jatkuvatoimisten loggereiden avulla seuraamme valon määrää myös tänä syksynä.

Jukka Aroviita, Tiina Laamanen, Jarno Turunen ja Maria Rajakallio, SYKE.

Kipsistä ei haittaa vuollejokisimpukoiden toukille

SAVE-hankkeessa on juuri valmistunut tutkimus kipsin vaikutuksista vuollejokisimpukoiden toukille. Tutkimuksissa selvitettiin veteen liuenneen kipsin vaikutuksia toukkien selviytymiseen eri kipsipitoisuuksilla. Testatuilla pitoisuuksilla kipsistä ei havaittu olevan haittaa toukkien elinkyvylle. Tutkimukseen osallistuneet vuollejokisimpukat ovat jo palanneet kotiinsa Perniönjokeen. Tutkija Johanna Salmelin (SYKE) kertoo tutkimuksen toteutuksesta ja tuloksista tarkemmin.

SAVE-hankkeen kipsinlevityksen pilottialueella Savijoella on luonnonsuojelulain ja EU:n luontodirektiivin nojalla rauhoitetun, uhanalaisen vuollejokisimpukan (Unio crassus) elinalueita, joten tutkimme kipsin eli kalsiumsulfaatin vaikutuksia lajiin. Sulfaatti, kuten muutkin ionit, voi haitata makean veden eläinten ionisäätelyä. Viime syksynä tutkittiin täysikasvuisten vuollejokisimpukoiden vasteita kipsille, ja nyt vuorossa oli selvittää vaikutuksia simpukoiden glokidium-toukille.

Vuollejokisimpukan glokidium-toukat ovat mikroskooppisen pieniä, noin 0,2 millimetrin mittaisia. Niillä on kaksi kuorenpuoliskoa, jotka ne kykenevät sulkemaan, mutta muuten ne eivät pysty aktiivisesti liikkumaan. Kuorenpuoliskoissa on pienet väkäset, joiden avulla ne tarttuvat kiinni kohtaamaansa kalaan pakollista loisintavaihetta varten. Simpukoiden elinkierto on monivaiheinen. Emosimpukat hedelmöittyvät, kun ympäröivästä vedestä kulkeutuu koiraan sukusoluja hengitysputken kautta simpukan sisään, minkä jälkeen alkiot alkavat kasvaa emosimpukan kiduslehdillä. Yhden simpukan sisällä voi kehittyä tuhansia toukkia. Emosimpukka vapauttaa toukat veteen, missä ne selviävät hengissä vain muutamia päiviä. Tänä aikana niiden täytyy kohdata kalaisäntä, jonka kiduksilla tai evillä ne loisivat muutaman viikon ajan kehittyäkseen muodonmuutoksen läpikäytyään elinkierron seuraavaan vaiheeseen, nuoruusvaiheeseen. Tämän jälkeen nuoret simpukat irrottautuvat kalasta ja jatkavat kasvuaan joen pohjaan kaivautuneena.

 

Hydrobiologi Rami Laaksonen kerää vuollejokisimpukoita Perniönjoesta. Simpukoiden kuorta varovasti raottamalla varmistettiin, että simpukan ulommilla kiduslehdillä oli kehittymässä toukkia. (Kuvat: Johanna Salmelin)

Tutkimusta varten aikuisia, toukkia kantavia vuollejokisimpukoita kerättiin toukokuussa Perniönjoesta. Työhön oli Varsinais-Suomen ELY-keskuksen myöntämä poikkeuslupa. Simpukat kuljetettiin laboratorioon ilmastetussa jokivedessä kylmälaukuissa.

Kipsin vaikutuksia vuollejokisimpukan glokidium-toukkiin tutkittiin lyhytaikaisilla, yhden ja kahden vuorokauden mittaisilla altistuskokeilla. Koevetenä käytettiin Savijoen Mittapadolta kerättyä vettä, johon lisättiin kipsiä vastaamaan kuutta eri sulfaattipitoisuutta: 30, 60, 120, 240, 480 ja 960 mg/l. Lisäksi mukana oli kaksi kontrollikäsittelyä: Savijoen vesi ilman lisättyä kipsiä, ja Perniönjoen vesi simpukoiden keruupaikalta.

Altistettavat toukat kerättiin vuollejokisimpukoiden ylläpitoastioista, joten emosimpukat säilyivät vahingoittumattomina. Toukkien elinkyky altistuksen päätyttyä mitattiin niiden kyvyllä sulkea kuorensa vasteena ruokasuolakäsittelylle. Elävät, elinkykyiset toukat olivat aukinaisia, ja reagoivat nopeasti viereen pipetoituun suolavesitippaan sulkemalla kuorensa. Toukat, jotka eivät reagoineet suolaveteen, laskettiin kuolleiksi, kuten myös altistuksen aikana ennen suolavesikäsittelyä sulkeutuneet yksilöt.

Elinkykyisten toukkien osuus oli keskimäärin yhtä suuri kaikissa käsittelyissä sekä yhden että kahden vuorokauden altistuksen jälkeen. Kokeiden pitoisuudet valittiin siten, että mukaan saatiin kipsipilotin aikainen keskimääräinen sulfaattipitoisuus (30 mg/l) ja maksimipitoisuus (470 mg/l) Savijoessa. Näistä pitoisuuksista ei tämän tutkimuksen perusteella ole haittaa vuollejokisimpukan toukkien elinkyvylle.

   

Vuollejokisimpukan eläviä, kuorenpuoliskot auki olevia glokidium-toukkia (kuva 1) ja kuorensa sulkeneita toukkia (kuvat 2 ja 3). (Kuvat: Johanna Salmelin)

Kesäkuun alussa simpukat palautettiin takaisin Perniönjokeen. (Kuvat: Johanna Salmelin)

Tutkijat: Johanna Salmelin (SYKE), Matti Leppänen (SYKE), Heikki Hämäläinen (Jyväskylän yliopisto)

Kipsin vaikutus maaperään ja kasvustoon

SAVE-hankkeessa pyritään selvittämään kipsinlevityksen vaikutuksia mahdollisimman laajasti. Aikaisemmin olemme kertoneet, kuinka vaikutuksia tarkkaillaan vesieliöissä, mm. vuollejokisimpukassa. Tällä kertaa aiheena on kipsin vaikutus peltojen maaperään ja kasvustoon. Maaperä- ja ympäristötieteen professori Markku Yli-Halla perehdyttää meidät aiheeseen ja analysoi samalla ennen kipsinlevitystä otettujen näytteiden tuloksia.

Kesällä 2016 ennen kipsin levitystä kerättiin maanäytteitä Savijoen valuma-alueen peltojen muokkauskerroksesta ja jankosta (pohjamaasta). Näytteenoton tarkoitus oli saada käsitys alueen viljelymaiden ominaisuuksista ennen kipsin levitystä, jotta kipsikäsittelyn aiheuttamia muutoksia voidaan aikanaan luotettavasti arvioida. Samasta syystä jokaiselta seurantalohkolta kerättiin myös kasvinäyte.

Kipsin vaikutusta peltomaahan tarkkaillaan SAVE-hankkeessa. Kuva: Janne Artell / NutriTrade

Näytteitä otettiin sekä pilotti- että vertailualueelta ja niin kipsikäsiteltäviltä kuin -käsittelemättömiltä peltolohkoilta. Maanäytteistä tehtiin viljavuusanalyysin perustutkimus. Siinä määritettiin maalaji ja multavuus aistinvaraisesti, pH(H2O) ja maan helppoliukoisten suolojen pitoisuutta kuvaava johtoluku sekä muutamien helppoliukoisten kasvinravinteiden (Ca, Mg, K, P, S) pitoisuudet. Kationipitoisuuksien perusteella laskettiin efektiivinen kationinvaihtokapasiteetti. Lisäksi määritettiin vesiuuttoisen fosforin pitoisuus.

SAVE-hankkeen näkökulmasta ovat oleellisia etenkin kalsium-, magnesium- fosfori- ja rikkipitoisuudet sekä maan johtoluku ja jossain määrin pH. Kipsin mukana maaperään tulee runsaasti kalsiumia ja rikkiä ja näiden pitoisuuksien voidaan olettaa kipsikäsittelyn myötä kasvavan. Mg-pitoisuus todennäköisesti puolestaan vähenee, koska Ca syrjäyttää kationinvaihtopaikoilta Mg-ioneja, jotka voivat huuhtoutua syvemmälle. Sulfaatin liukeneminen näkyy todennäköisesti myös jonkin verran kohoavina johtoluvun arvoina.

Kipsin vaikutus pellon helppoliukoisen fosforin pitoisuuteen on keskeinen seurantakohde. Maaperäkemian lainalaisuuksien pohjalta voi päätellä, että kipsin fosforikuormitusta pienentävä vaikutus ei pohjaudu varsinaisesti helppoliukoisen fosforin pitoisuuden alenemiseen vaan maan suolapitoisuuden ja kalsiumpitoisuuden kasvun aiheuttamaan fosforin liukenemisen vähenemiseen ja samoista tekijöistä johtuvaan pienempään eroosioon. Kun maan mururakenne vahvistuu suolapitoisuuden kasvun myötä, valumaveteen päätyy vähemmän maapartikkeleita ja siten myös niihin sitoutunutta fosforia. Tällöin liikkeelle lähtevän ja Savijokeen päätyvän fosforin määrä pienenee. Viljelijöitä kiinnostaa epäilemättä suuresti se, vaikuttaako kipsikäsittely kasvien fosforin saantiin ja lannoitustarpeeseen. Aikaisemmin kasvihuoneessa tehdyn kokeen perusteella kipsilisäys ei heikennä kasvien fosforin saantia eikä siis lisää fosforilannoituksen tarvetta.

Kipsi on neutraalisuola, jonka lisäys maahan ei periaatteessa aiheuta muutoksia maan pH:ssa. Kipsi tosin sisältää kalsiumia, ja monet luulevat virheellisesti sen nostavan maan pH:ta, kun kerran sitä on kalkitusaineissakin. Maan pH:n kohoaminen perustuu kuitenkin kalkitusaineen anioniin, joka kipsissä on sulfaatti; se ei sido eikä luovuta happamuutta eikä näin ollen vaikuta maan happamuuteen. Kipsin liukeneminen nostaa hieman maan suolapitoisuutta, mikä saattaa hieman (joitain pH-yksikön kymmenyksiä) alentaa viljavuusanalyysissä mitattavaa pH(H2O)-arvoa.

Näytteiden maalajijakauma oli alueelle tyypillinen: 70 % edusti savimaita ja 30 % karkeita kivennäismaita. SAVE-aineiston karkeat kivennäismaat olivat kaikilta kemiallisilta ominaisuuksiltaan hyvin Liedon ja Tarvasjoen alueen karkeiden kivennäismaiden kaltaisia. Savimaat poikkesivat alueen savimaista hieman enemmän kuin karkeat maat. Suurin ero oli maan P-luvussa, joka SAVE-aineiston savimaissa edusti selvästi yhtä viljavuusluokkaa korkeampaa tasoa.

Kasvinäytteistä määritettiin yhteensä 12 eri aineen kokonaispitoisuudet (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, B ja Se). Kerätyistä kasvinäytteistä 22 oli viljoja, 7 heinää ja lisäksi mukana oli yksi näyte hernekasvustosta. Kasvinäytteille vertailukohdan löytäminen on hieman hankalampaa, koska SAVE-hankkeen näytteet edustivat kohtalaisen nuoressa kasvuvaiheessa olevaa kasvustoa, ja kirjallisuudesta löytyy pääasiassa tuleentunutta viljakasvustoa (jyvät, oljet) koskevaa tietoa. Merkille pantavaa on se, että valtaosa näytteiden seleenipitoisuuksista oli alle määritysrajan (<0,02 mg/kg) ja vain harvassa tapauksessa kasvien seleenipitoisuus oli tasolla, johon lannoituksella pyritään (0,1 mg/kg).  Vaikuttaakin siltä, että Savijoen valuma-alueen viljelijät käyttävät huomattavassa määrin lannoitteita, jotka eivät sisällä seleeniä. Toivottavasti he ottavat asian huomioon kotieläintensä ruokinnassa.

Kipsikäsittelyn jälkeisen näytteenoton aika on nyt käsillä. Maaperänäytteet otetaan nyt keväällä ennen toukotöiden alkua ja kasvustonäytteet alkukesästä. Näiden tulosten analysoinnin jälkeen voimme jo arvioida, kuinka kipsi vaikuttaa maaperässä ja peltojen kasvustossa.

Professori Markku Yli-Halla
Maaperä- ja ympäristötiede
Helsingin yliopisto

Mitä vuollejokisimpukat tuumaavat kipsistä?

Lokakuussa SYKEn ja Jyväskylän yliopiston tutkijat aloittivat tutkimukset vuollejokisimpukoilla ja kävivät hakemassa laboratoriokokeisiin vettä Savijoesta sekä simpukoita Perniönjoen runsaasta populaatiosta. Tavoitteena oli selvittää vaikuttaako jokiveteen liukeneva kipsi simpukoiden käyttäytymiseen ja menestymiseen Savijoessa ja muissa tulevien kipsinlevitysalueiden joissa. Kokeiden ensimmäisistä tuloksista kertoo jälleen SYKEn erikoitutkija Matti Leppänen.

Laboratoriokokeissa mitattiin simpukoiden reaktioita neljään eri kipsikäsittelyyn; Savijoen kontrollivedessä ei ollut kipsiä ja kolmessa käsittelyssä jokiveteen lisättiin kipsiä siten, että mitatuiksi sulfaattipitoisuuksiksi muodostui 40 mg, 200 mg ja 1100 mg litraa kohti. Alin sulfaattipitoisuus kuvaa mahdollista keskimääräistä pitoisuutta joessa, 200 mg teoreettista maksimipitoisuutta ja ylin pitoisuus on lähellä kipsin liukoisuusrajaa.

Simpukoiden reaktioita arvioitiin kolmella tavalla neljän päivän kipsialtistuksessa: 1) Mittasimme aktiivisuutta (prosenttia kokonaisajasta) altistuskammion sähkökentässä tapahtuvien muutosten avulla. Yhteismitallinen aktiivisuus koostuu jalan liikkeistä, kuoren aukeamisesta ja veden suodattamisesta/kidushengittämisestä. 2) Laskimme aktiivisuustyyppejä silmämääräisesti kahdesti päivässä. 3) Seurasimme ruokintalevän kulutusta sameus- ja levätiheysmittausten avulla.

Simpukat käyttävät jalkaa liikkumiseen, suodattavat sisäänhengitysaukon kautta saadun orgaanisen materiaalin ravinnoksi ja poistavat ylimääräisen materiaalin poistoaukon kautta. Nämä käyttäytymisen muodot näkyvät selvästi videossa, joka on kuvattu kokeen yhden altistusastian yksilöstä (kuvaaja: Johanna Salmelin).

Neljän päivän altistuksen jälkeen simpukat olivat sähkökenttämittauksissa vähemmän aktiivisia kahdessa suuremmassa kipsipitoisuudessa vaikkakin näitä aktiivisuusjaksoja oli suhteellisen vähän (5-18 % kokonaismittausajasta, kuva 1). Neljän päivän altistuksen aikana tutkijan havainnoimissa aktiivisuusmuodoissa kuoren liike, veden suodatus ja kaikkien muotojen summa eivät osoittaneet eroa käsittelyjen välillä. Sen sijaan simpukat pitivät jalkaa ulkona kahdessa suurimmassa pitoisuudessa useammin kuin kontrollissa. Koska simpukoita ruokittiin levällä, pystyimme myös arvioimaan niiden suodatusaktiivisuutta levän poistumisen avulla. Neljän päivän altistuksen jälkeen ruokalevää poistui vedestä kuitenkin sama määrä kaikissa käsittelyissä.

Kuvaaja-simpukoiden-aktiivisuudesta
Kuva 1: Aikuisten vuollejokisimpukoiden keskimääräinen aktiivisuus (suodattaminen sekä jalan ja kuoren liikkeet) sähkökenttämittauksissa laskennallisilla sulfaattipitoisuuksilla 0, 30, 200 ja 1200 mg/l (nämä eroavat hieman mitatuista pitoisuuksista). Pylväät osoittavat kunkin altistusryhmän (n=8) keskimääräisen aktiivisuuden (% mittausajasta) sekä keskivirheen.

Laboratoriotulokset voivat näyttää ristiriitaisilta. Altistushetki oli kuitenkin erilainen ja jalan passiivinen ulkona pitäminen ei välttämättä näy sähkökentän muutoksissa. Näiden suhteellisen lyhytaikaisten altistusten valossa voimme sanoa, että ainoastaan suurimmat kipsi- ja siten sulfaattipitoisuudet vaikuttavat simpukan käyttäytymiseen. Jalan käyttö voi kieliä liikkumishalukkuudesta pakoreaktiona epämiellyttävässä ympäristössä, jota kokonaisaktiivisuuden väheneminen (ml. suodatus ja kuoren liikkeet) tukee. Näin suuriksi (200 mg ja 1100 mg/L) tuskin kuitenkaan kohoavat Savijoessa tai muissa kipsinlevitysalueiden virtavesissä.

Simpukoiden käyttäytymistä mitattiin myös itse Savijoessa lokakuun alussa. Kokonaisaktiivisuus oli viileässä vedessä varsin vähäistä ja vain 7 – 8 % mittausajasta havaittiin liikkeeseen liittyvä signaali. Simpukkayksilöt jätettiin Savijokeen sumppuihin, ja palasimme kuukauden päästä mittaamaan samojen yksilöiden käyttäytymistä. Toiveena oli saada sateita, jotka huuhtoisivat kipsiä jokeen ja muuttaisivat olosuhteita.

Simpukat palautetaan Perniönjokeen
Kuva 2: Kokeeseen osallistuneet simpukat pääsevät takaisin Perniönjokeen tutkija Johanna Salmelinin avustamana. Kuva: Matti Leppänen

Syksy oli kuitenkin kuiva, ja vedenlaatu pysyi samanlaisena kummallakin paikalla. Vain lämpötila oli laskenut yhden plusasteen tuntumaan. Yläjuoksun verrokkialueella kylmä vesi ja olematon virtaus olivat johtaneet simpukoiden mielestä talviolosuhteisiin ja siten inaktiivisuuteen. Parmanharjulla virtaus piti vielä simpukoita yhtä aktiivisena kuin kuukautta aikaisemmin. Mittausten päätyttyä marraskuussa palautimme sekä sumputetut että laboratoriossa vierailleet yksilöt kotijokeensa Perniön Yliskylän kirkon viereen.

Erikoistutkija Matti Leppänen
Suomen ympäristökeskus (SYKE)
Laboratoriokeskus / Ekotoksikologia ja riskinarviointi

Tutkijat: Matti Leppänen (SYKE), Heikki Hämäläinen (JY), Krista Rantamo (JY), Johanna Salmelin (JY)

Sähköä jokeen: vuollejokisimpukoiden käyttäytymisen mittaamista

Kipsipilotin ensisijaisena tavoitteena on selvittää kipsinlevityksen käytännön toteutukseen liittyviä haasteita sekä varmistaa toimenpiteen vaikutus peltojen ravinnehuuhtoumaan. Kuitenkin myös toimenpiteen muut potentiaaliset vaikutukset on selvitettävä ennen kuin kipsitys voidaan laajentaa koko Etelä-Suomeen. Erittäin olennainen selvitettävä asia on kipsin vaikutus vesieliöstöön. Tästä kertoo SYKEn erikoitutkija Matti Leppänen.

Lounais-Suomen joille on tyypillistä savisameus, joka aiheutuu, kun pelloilta huuhtoutuu hiukkasia vettä samentamaan. Samalla liikkuu myös ravinteita, joita SAVE-projekti yrittää torjua. Entäpä kipsi? Kalsiumsulfaatti on hyvin vesiliukoista ja huolimatta sitoutumisesta maahan, jonkin verran voi päätyä myös jokeen. Sen enempää kalsiumia kuin sulfaattiakaan ei voi pitää perinteisinä haitallisina aineina, ovathan ne tavallisia kaikissa luonnon vesissä. Suuret määrät voivat kuitenkin häiritä eliöiden ionitasapainoa ja sen säätelyä. Sen takia on hyvä tutkia, olisiko kipsillä merkitystä Savijoen eliöille oletetuissa huuhtoumamäärissä tai äärimmäisissä pitoisuuksissa.

Altistuskammioita ja simpukoita Savijoella
Altistuskammiot simpukoineen Savijoen yläjuoksun vähäisessä vesimäärässä. Kammioiden lisäksi käyttäytymismittausten laitteistoon kuuluvat auton akku, invertteri, tietokone ja mittalaite. Kuva: Matti Leppänen

Savijoessa, kuten joissakin muissakin länsirannikon joissa, on uhanalaista vuollejokisimpukkaa. Sen hyvinvoinnista olemme tietysti kiinnostuneita. Hiljaista elämää viettävien simpukoiden reaktioita ulkopuolisiin tekijöihin on hankala tutkia. Onneksi käytettävissämme on laitteisto, jolla voidaan, sähkökentässä tapahtuvien muutosten avulla, tulkita simpukan liikkeitä koekammiossa. Kuoren avaaminen, jalan liikkeet ja veden siivilöinti havaitaan herkällä laitteella, ja käyttäytymisessä mitattuja muutoksia voidaan verrata altistusolosuhteisiin. Näin ainakin teoriassa – kokeet näyttävät toimiiko tämä käytännössä.

Vuollejokisimpukoita
Savijoesta pilottialueen alapuolelta löytyneitä vuollejokisimpukoita. Kuva: Rami Laaksonen

Kokeiden toteuttamiseksi olemme saaneet apua simpukka-asiantuntija Rami Laaksoselta, joka poimi meille Perniönjoesta Varsinais-Suomen ELY-keskuksen poikkeusluvalla 60 vuollejokisimpukkaa. Joen runsaasta populaatiosta voidaan ”lainata” koeyksilöitä kokeisiimme ja palauttaa ne keräyspaikkaan palvelun jälkeen. Kokeita varten veimme 40 simpukkaa Jyväskylään SYKEn ekotoksikologian laboratorioon, jossa niiden käyttäytymistä mitataan erilaisilla kipsialtistuksen tasoilla Savijoen vedessä. Mittasimme myös simpukoiden reaktioita jo hakumatkalla Perniönjoessa ja Savijoessa kahdella paikalla taustatiedoksi. Lisäksi jätimme Savijoella simpukoita sumppuihin sekä kipsinlevitys- että yläjuoksun verrokkialueelle. Näillä simpukoilla toistamme kuukauden kuluttua mittaukset ja vertaamme vasteita vedenlaatutietoihin.

Savijoki - vedenkeruu
Savijoen norosta kerättiin liki 400 litraa vettä laboratoriokokeisiin. Kuvassa tutkijat Johanna Salmelin ja Krista Rantamo. Kuva: Matti Leppänen

Simpukoiden lisäksi olemme kiinnostuneita näkinsammalten pärjäämisestä kipsialtistuksissa. Näkinsammalet ovat lähes jokaisen virtaveden vakiolajeja, joilla on tärkeä perustuottajan ja habitaatin monipuolisuutta ylläpitävä rooli. Tässä tarkoituksessa teemme kasvukokeita isonäkinsammalella laboratoriossa erilaisilla kipsipitoisuuksilla Savijoen vedessä. Sekä simpukoiden että sammalten kokeita tehdään nyt lokakuussa ja tuloksia voidaan odottaa marraskuussa.

Erikoistutkija Matti Leppänen
Suomen ympäristökeskus (SYKE)
Laboratoriokeskus / Ekotoksikologia ja riskinarviointi

Pohja näkyvissä

Antti Iho
Antti Iho, Erikoistutkija, Luke

Unohduin nojaamaan otsallani kuivauskaapin oveen ja tuijottamaan tiskiallasta. Altaan pohjalla oli syvä lautanen täynnä vettä. Kippasin kädessäni olevan maitolasin jämät lautaselle. Vesi sameni ja valui reunojen yli. Täytin lasin kirkkaalla vedellä ja kaadoin perään, sameaa valui reunojen yli. Toisen lasillisen. Se, ettei kolmaskaan vesilasillinen tuonut pohjaa näkyviin, herätti minut siitä etunojahorteesta. Miksei se kirkastu?

Veden koettu sameus ei kulje käsi kädessä siinä olevien hippusten määrän kanssa. Savisamea vesi voi näyttää pitkään samealta, vaikka hippusten määrää litraa kohden leikkaisi paljonkin. Näkyvä vaikutus on kiven alla. Tämä tekee savisiin vesiin kohdistuvista suojeluponnisteluista turhauttavia.

Vantaankosken silta (editoitu)
Vanhankaupunginkosken pato ja Viikintien silta. Kuva: Samuli Puroila

Jos syksyllä on ollut pitkään sateetonta, näen Viikintien sillalta Vantaanjoen pohjan, virrassa heiluvat pohjan kasvit ja siinä liikkuvat kalat. Huomasin tämän ensimmäisen kerran elokuussa 1998. Olin kasvanut Vantaanjoen varrella enkä ollut koskaan aiemmin erottanut joen pohjaa – en tiennyt sen olevan mahdollista. Vimmaiselle kalamiehelle tämä oli vavahduttava kokemus. Tämähän on oikea joki!

Saattaa olla, että Vantaanjoki ja ensimmäinen outo kokemus kirkkaammasta joesta ajoivat minua tutkimusaiheeni pariin. Mutta tutkijana sitä lähinnä tekee tutkimuksia, joiden tulokset eivät paljon kulmakarvoja kohottele. Kolme vuotta derivointia – kannattaisi kohdistaa ympäristöohjaus maaperän fosforiin eikä lannoitteeseen. Check. Kaksi ja puoli vuotta mallinnusta ja Matlab-koodausta – korkean fosforitilan maita ei kannata lannoittaa niin paljon. Check. Ei hirveän dramaattista.

Pohja näkyvissä
Syyskuun vähäiset sateet ovat tuoneet Vantaanjoen pohjan esiin. Kuva: Samuli Puroila

2010 loppuneeseen Trap-hankkeeseen osallistuminen oli virkistävä poikkeus. Siinä levitettiin kipsiä sadalle hehtaarille ja katsottiin huolellisella koejärjestelyllä, mitä tapahtuu. Tapahtui ihmeen paljon. Samaan aikaa vedin Tarveke-hanketta, jossa päädyttiin niin ikään levittämään kipsiä. Hankkeessa tutkittiin tarjouskilpailumekanismia. Sen tulokset vahvistivat kuvaa, että kipsi saattaa olla paitsi toimiva, myös viljelijöiden laajasti hyväksymä toimenpide.

Jos kipsi kirkastaa savisia vesiä, ei maksa mielettömästi ja viljelijät ovat laajasti valmiita käyttämään sitä, niin voisiko sitä levittää kokonaiselle valuma-alueelle? Yhtäkkiä olin mukana jossain, joka oikeasti voisi tuottaa näkyviä vaikutuksia. Ja vaikka kohdealueeksi valikoitui Savijoki, ajattelin totta kai Vantaanjokea, josta paikallisten päättäväisyys on tehnyt Suomenlahden merkittävimmän taimenen kutujoen. Mitä jos se olisi vielä kirkkaampi? Harjaisiko kosken katsominen aivoista karstaa vielä tehokkaammin?

Vantaanjoen sakeaa vettä (editoitu)
Kovin hyvä näkyvyys ei kuitenkaan ole edes poutasäiden jälkeen. Kuva: Samuli Puroila

Kipsin levittäminen lisää veden sulfaattipitoisuutta. Sen vaikutukset kaloihin tai mätiin ovat lähinnä hypoteettisia, mutta SAVE-hankkeessa ei jätetä mitään tutkimatta. Hyvä niin. Mutta voiko veden kirkastuminen johtaa muutoksiin kalakannoissa: jäisikö taimenen poikasia enemmän petojen suuhun, vai olisiko petoja vähemmän? Entä kalastuspainetta? Latvapurot kuten Longinoja ovat jo nyt aika kirkkaita, eikä pääuoman kirkastuminen vaikuttaisi näiden poikasten ensimmäisiin elinvuosiin mitenkään. Ja entäpä sitten pääuoma? Mitä jos vesi kirkastuisi ja Vantaan kaupunki lopettaisi kirjolohien kaatamisen jokeen? Entä jos ikänsä Vantaanjoen varrella asuneet ovatkin muodostaneet maitokahvin väriseen veteen tunnesiteen? Niin että vaikka valitsisivat kirkkaan samean sijaan, kuitenkin kaipaisivat vanhaa?

Vanhankaupunginkoski
Vanhankaupunginkosken itäinen haara. Kenties muutaman vuoden kuluttua tässä voi tarkkailla taimenten nousua kirkkaassa vedessä kohti Vantaanjoen latvoja. Kuva: Samuli Puroila

SAVE-hankkeen yhteydessä ajatukseni karkaavat jatkuvasti kalastukseen. Ehkä haluan ajatella, että jokivesiä kirkastamalla teemme kaloille palveluksen. Että ikään kuin osaltani pyydän kaloilta anteeksi, että pyydystän niitä, kopautan nuijalla päähän ja syön. Tai ehkä haluan vain nähdä useammin pohjan ja kiven takana kallistelevan kalan, joka keräilee voimia seuraavaan parin metrin etappiin, ylös- ja eteenpäin.